ترغب بنشر مسار تعليمي؟ اضغط هنا

Reasoning with Justifiable Exceptions in Contextual Hierarchies (Appendix)

71   0   0.0 ( 0 )
 نشر من قبل Loris Bozzato
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is an appendix to the paper Reasoning with Justifiable Exceptions in Contextual Hierarchies by Bozzato, Serafini and Eiter, 2018. It provides further details on the language, the complexity results and the datalog translation introduced in the main paper.



قيم البحث

اقرأ أيضاً

Dealing with context dependent knowledge has led to different formalizations of the notion of context. Among them is the Contextualized Knowledge Repository (CKR) framework, which is rooted in description logics but links on the reasoning side strong ly to logic programs and Answer Set Programming (ASP) in particular. The CKR framework caters for reasoning with defeasible axioms and exceptions in contexts, which was extended to knowledge inheritance across contexts in a coverage (specificity) hierarchy. However, the approach supports only this single type of contextual relation and the reasoning procedures work only for restricted hierarchies, due to non-trivial issues with model preference under exceptions. In this paper, we overcome these limitations and present a generalization of CKR hierarchies to multiple contextual relations, along with their interpretation of defeasible axioms and preference. To support reasoning, we use ASP with algebraic measures, which is a recent extension of ASP with weighted formulas over semirings that allows one to associate quantities with interpretations depending on the truth values of propositional atoms. Notably, we show that for a relevant fragment of CKR hierarchies with multiple contextual relations, query answering can be realized with the popular asprin framework. The algebraic measures approach is more powerful and enables e.g. reasoning with epistemic queries over CKRs, which opens interesting perspectives for the use of quantitative ASP extensions in other applications. Under consideration for acceptance in Theory and Practice of Logic Programming (TPLP).
In this paper, we consider the setting of graph-structured data that evolves as a result of operations carried out by users or applications. We study different reasoning problems, which range from ensuring the satisfaction of a given set of integrity constraints after a given sequence of updates, to deciding the (non-)existence of a sequence of actions that would take the data to an (un)desirable state, starting either from a specific data instance or from an incomplete description of it. We consider an action language in which actions are finite sequences of conditional insertions and deletions of nodes and labels, and use Description Logics for describing integrity constraints and (partial) states of the data. We then formalize the above data management problems as a static verification problem and several planning problems. We provide algorithms and tight complexity bounds for the formalized problems, both for an expressive DL and for a variant of DL-Lite.
Reasoning on defeasible knowledge is a topic of interest in the area of description logics, as it is related to the need of representing exceptional instances in knowledge bases. In this direction, in our previous works we presented a framework for r epresenting (contextualized) OWL RL knowledge bases with a notion of justified exceptions on defeasible axioms: reasoning in such framework is realized by a translation into ASP programs. The resulting reasoning process for OWL RL, however, introduces a complex encoding in order to capture reasoning on the negative information needed for reasoning on exceptions. In this paper, we apply the justified exception approach to knowledge bases in $textit{DL-Lite}_{cal R}$, i.e., the language underlying OWL QL. We provide a definition for $textit{DL-Lite}_{cal R}$ knowledge bases with defeasible axioms and study their semantic and computational properties. In particular, we study the effects of exceptions over unnamed individuals. The limited form of $textit{DL-Lite}_{cal R}$ axioms allows us to formulate a simpler ASP encoding, where reasoning on negative information is managed by direct rules. The resulting materialization method gives rise to a complete reasoning procedure for instance checking in $textit{DL-Lite}_{cal R}$ with defeasible axioms. Under consideration in Theory and Practice of Logic Programming (TPLP).
Conditionals are useful for modelling, but are not always sufficiently expressive for capturing information accurately. In this paper we make the case for a form of conditional that is situation-based. These conditionals are more expressive than clas sical conditionals, are general enough to be used in several application domains, and are able to distinguish, for example, between expectations and counterfactuals. Formally, they are shown to generalise the conditional setting in the style of Kraus, Lehmann, and Magidor. We show that situation-based conditionals can be described in terms of a set of rationality postulates. We then propose an intuitive semantics for these conditionals, and present a representation result which shows that our semantic construction corresponds exactly to the description in terms of postulates. With the semantics in place, we proceed to define a form of entailment for situated conditional knowledge bases, which we refer to as minimal closure. It is reminiscent of and, indeed, inspired by, the version of entailment for propositional conditional knowledge bases known as rational closure. Finally, we proceed to show that it is possible to reduce the computation of minimal closure to a series of propositional entailment and satisfiability checks. While this is also the case for rational closure, it is somewhat surprising that the result carries over to minimal closure.
Linear Logic and Defeasible Logic have been adopted to formalise different features of knowledge representation: consumption of resources, and non monotonic reasoning in particular to represent exceptions. Recently, a framework to combine sub-structu ral features, corresponding to the consumption of resources, with defeasibility aspects to handle potentially conflicting information, has been discussed in literature, by some of the authors. Two applications emerged that are very relevant: energy management and business process management. We illustrate a set of guide lines to determine how to apply linear defeasible logic to those contexts.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا