ترغب بنشر مسار تعليمي؟ اضغط هنا

Precovery of TESS Single Transits with KELT

279   0   0.0 ( 0 )
 نشر من قبل Xinyu Yao
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During the TESS prime mission, 74% of the sky area will only have an observational baseline of 27 days. For planets with orbital periods longer than 13.5 days, TESS can only capture one or two transits, and the planet ephemerides will be difficult to determine from TESS data alone. Follow-up observations of transits of these candidates will require precise ephemerides. We explore the use of existing ground-based wide-field photometric surveys to constrain the ephemerides of the TESS single-transit candidates, with a focus on the Kilodegree Extremely Little Telescope (KELT) survey. We insert simulated TESS-detected single transits into KELT light curves, and evaluate how well their orbital periods can be recovered. We find that KELT photometry can be used to confirm ephemerides with high accuracy for planets of Saturn size or larger with orbital periods as long as a year, and therefore span a wide range of planet equilibrium temperatures. In a large fraction of the sky we recover 30% to 50% of warm Jupiter systems (planet radius of 0.9 to 1.1 R_J and 13.5 < P < 50 days), 5% to 20% of temperate Jupiters (50 < P < 300 days), and 10% to 30% of warm Saturns (planet radius of 0.5 to 0.9 R_J and 13.5 < P < 50 days). The resulting ephemerides can be used for follow-up observations to confirm candidates as planets, eclipsing binaries, or other false positives, as well as to conduct detailed transit observations with facilities like JWST or HST.



قيم البحث

اقرأ أيضاً

NASAs Transiting Exoplanet Survey Satellite (TESS) mission is expected to discover hundreds of planets via single transits first identified in their light curves. Determining the orbital period of these single transit candidates typically requires a significant amount of follow-up work to observe a second transit or measure a radial velocity orbit. In Yao et al. (2019), we developed simulations that demonstrated the ability to use archival photometric data in combination with TESS to precover the orbital period for these candidates with a precision of several minutes, assuming circular orbits. In this work, we incorporate updated models for TESS single transits, allowing for eccentric orbits, along with an updated methodology to improve the reliability of the results. Additionally, we explore how radial velocity (RV) observations can be used to follow up single transit events, using strategies distinct from those employed when the orbital period is known. We find that the use of an estimated period based on a circular orbit to schedule reconnaissance RV observations can efficiently distinguish eclipsing binaries from planets. For candidates that pass reconnaissance RV observations, we simulate RV monitoring campaigns that enable one to obtain an approximate orbital solution. We find this method can regularly determine the orbital periods for planets more massive than 0.5 M_J with orbital periods as long as 100 days.
We present results of a study on identifying circumbinary planet candidates that produce multiple transits during one conjunction with eclipsing binary systems. The occurrence of these transits enables us to estimate the candidates orbital periods, w hich is crucial as the periods of the currently known transiting circumbinary planets are significantly longer than the typical observational baseline of TESS. Combined with the derived radii, it also provides valuable information needed for follow-up observations and subsequent confirmation of a large number of circumbinary planet candidates from TESS. Motivated by the discovery of the 1108-day circumbinary planet Kepler-1647, we show the application of this technique to four of Keplers circumbinary planets that produce such transits. Our results indicate that in systems where the circumbinary planet is on a low-eccentricity orbit, the estimated planetary orbital period is within <10-20% of the true value. This estimate is derived from photometric observations spanning less than 5% of the planets period, demonstrating the strong capability of the technique. Capitalizing on the current and future eclipsing binaries monitored by NASAs TESS mission, we estimate that hundreds of circumbinary planets candidates producing multiple transits during one conjunction will be detected in the TESS data. Such a large sample will enable statistical understanding of the population of planets orbiting binary stars and shed new light on their formation and evolution.
We present new Spitzer transit observations of four K2 transiting sub-Neptunes: K2-36c, K2-79b, K2-167b, and K2-212b. We derive updated orbital ephemerides and radii for these planets based on a joint analysis of the Spitzer, TESS, and K2 photometry. We use the EVEREST pipeline to provide improved K2 photometry, by detrending instrumental noise and K2s pointing jitter. We used a pixel level decorrelation method on the Spitzer observations to reduce instrumental systematic effects. We modeled the effect of possible blended eclipsing binaries, seeking to validate these planets via the achromaticity of the transits (K2 versus Spitzer). However, we find that Spitzers signal-to-noise ratio for these small planets is insufficient to validate them via achromaticity. Nevertheless, by jointly fitting radii between K2 and Spitzer observations, we were able to independently confirm the K2 radius measurements. Due to the long time baseline between the K2 and Spitzer observations, we were also able to increase the precision of the orbital periods compared to K2 observations alone. The improvement is a factor of 3 for K2-36c, and more than an order of magnitude for the remaining planets. Considering possible JWST observations in 1/2023, previous 1 sigma uncertainties in transit times for these planets range from 74 to 434 minutes, but we have reduced them to the range of 8 to 23 minutes.
We measured the optical phase curve of the transiting brown dwarf KELT-1b (TOI 1476, Siverd et al. 2012) using data from the TESS spacecraft. We found that KELT-1b shows significant phase variation in the TESS bandpass, with a relatively large phase amplitude of $234^{+43}_{-44}$ ppm and a secondary eclipse depth of $371^{+47}_{-49}$ ppm. We also measured a marginal eastward offset in the dayside hotspot of $18.3^circpm7.4^circ$ relative to the substellar point. We detected a strong phase curve signal attributed to ellipsoidal distortion of the host star, with an amplitude of $399pm19$ ppm. Our results are roughly consistent with the Spitzer phase curves of KELT-1b (Beatty et al. 2019), but the TESS eclipse depth is deeper than expected. Our cloud-free 1D models of KELT-1bs dayside emission are unable to fit the full combined eclipse spectrum. Instead, the large TESS eclipse depth suggests that KELT-1b may have a significant dayside geometric albedo of $mathrm{A}_mathrm{g}sim0.5$ in the TESS bandpass, which would agree with the tentative trend between equilibrium temperature and geometric albedo recently suggested by Wong et al. 2020. We posit that if KELT-1b has a high dayside albedo, it is likely due to silicate clouds (Gao et al. 2020) that form on KELT-1bs nightside (Beatty et al. 2019, Keating et al. 2019) and are subsequently transported onto the western side of KELT-1bs dayside hemisphere before breaking up.
We present the discoveries of KELT-25b (TIC 65412605, TOI-626.01) and KELT-26b (TIC 160708862, TOI-1337.01), two transiting companions orbiting relatively bright, early A-stars. The transit signals were initially detected by the KELT survey, and subs equently confirmed by textit{TESS} photometry. KELT-25b is on a 4.40-day orbit around the V = 9.66 star CD-24 5016 ($T_{rm eff} = 8280^{+440}_{-180}$ K, $M_{star}$ = $2.18^{+0.12}_{-0.11}$ $M_{odot}$), while KELT-26b is on a 3.34-day orbit around the V = 9.95 star HD 134004 ($T_{rm eff}$ =$8640^{+500}_{-240}$ K, $M_{star}$ = $1.93^{+0.14}_{-0.16}$ $M_{odot}$), which is likely an Am star. We have confirmed the sub-stellar nature of both companions through detailed characterization of each system using ground-based and textit{TESS} photometry, radial velocity measurements, Doppler Tomography, and high-resolution imaging. For KELT-25, we determine a companion radius of $R_{rm P}$ = $1.64^{+0.039}_{-0.043}$ $R_{rm J}$, and a 3-sigma upper limit on the companions mass of $sim64~M_{rm J}$. For KELT-26b, we infer a planetary mass and radius of $M_{rm P}$ = $1.41^{+0.43}_{-0.51}$ $M_{rm J}$ and $R_{rm P}$ = $1.940^{+0.060}_{-0.058}$ $R_{rm J}$. From Doppler Tomographic observations, we find KELT-26b to reside in a highly misaligned orbit. This conclusion is weakly corroborated by a subtle asymmetry in the transit light curve from the textit{TESS} data. KELT-25b appears to be in a well-aligned, prograde orbit, and the system is likely a member of a cluster or moving group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا