ﻻ يوجد ملخص باللغة العربية
NASAs Transiting Exoplanet Survey Satellite (TESS) mission is expected to discover hundreds of planets via single transits first identified in their light curves. Determining the orbital period of these single transit candidates typically requires a significant amount of follow-up work to observe a second transit or measure a radial velocity orbit. In Yao et al. (2019), we developed simulations that demonstrated the ability to use archival photometric data in combination with TESS to precover the orbital period for these candidates with a precision of several minutes, assuming circular orbits. In this work, we incorporate updated models for TESS single transits, allowing for eccentric orbits, along with an updated methodology to improve the reliability of the results. Additionally, we explore how radial velocity (RV) observations can be used to follow up single transit events, using strategies distinct from those employed when the orbital period is known. We find that the use of an estimated period based on a circular orbit to schedule reconnaissance RV observations can efficiently distinguish eclipsing binaries from planets. For candidates that pass reconnaissance RV observations, we simulate RV monitoring campaigns that enable one to obtain an approximate orbital solution. We find this method can regularly determine the orbital periods for planets more massive than 0.5 M_J with orbital periods as long as 100 days.
During the TESS prime mission, 74% of the sky area will only have an observational baseline of 27 days. For planets with orbital periods longer than 13.5 days, TESS can only capture one or two transits, and the planet ephemerides will be difficult to
Radial velocity identification of extrasolar planets has historically been dominated by optical surveys. Interest in expanding exoplanet searches to M dwarfs and young stars, however, has motivated a push to improve the precision of near infrared rad
Radial velocity (RV) surveys have detected hundreds of exoplanets through their gravitational interactions with their host stars. Some will be transiting, but most lack sufficient follow-up observations to confidently detect (or rule out) transits. W
As exoplanetary science matures into its third decade, we are increasingly offered the possibility of pre existing, archival observations for newly detected candidates. This is particularly poignant for the TESS mission, whose survey spans bright, ne
We present results of a study on identifying circumbinary planet candidates that produce multiple transits during one conjunction with eclipsing binary systems. The occurrence of these transits enables us to estimate the candidates orbital periods, w