ترغب بنشر مسار تعليمي؟ اضغط هنا

ACCESS: A featureless optical transmission spectrum for WASP-19b from Magellan/IMACS

183   0   0.0 ( 0 )
 نشر من قبل N\\'estor Espinoza
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The short period ($0.94$-day) transiting exoplanet WASP-19b is an exceptional target for transmission spectroscopy studies, due to its relatively large atmospheric scale-height ($sim 500$ km) and equilibrium temperature ($sim 2100$ K). Here we report on six precise spectroscopic Magellan/IMACS observations, five of which target the full optical window from $0.45-0.9mu$m and one targeting the $0.4-0.55mu$m blue-optical range. Five of these datasets are consistent with a transmission spectrum without any significant spectral features, while one shows a significant slope as a function of wavelength, which we interpret as arising from photospheric heterogeneities in the star. Coupled with HST/WFC3 infrared observations, our optical/near-infrared measurements point to the presence of high altitude clouds in WASP-19bs atmosphere in agreement with previous studies. Using a semi-analytical retrieval approach, considering both planetary and stellar spectral features, we find a water abundance consistent with solar for WASP-19b and strong evidence for sub-solar abundances for optical absorbers such as TiO and Na; no strong optical slope is detected, which suggests that if hazes are present, they are much weaker than previously suggested. In addition, two spot-crossing events are observed in our datasets and analyzed, including one of the first unambiguously detected bright spot-crossing events on an exoplanet host star.

قيم البحث

اقرأ أيضاً

We present ground-based optical transmission spectroscopy of the low-density hot Jupiter WASP-88b covering the wavelength range 4413-8333 {AA} with the FORS2 spectrograph on the Very Large Telescope. The FORS2 white light curves exhibit a significant time-correlated noise which we model using a Gaussian Process and remove as a wavelength-independent component from the spectroscopic light curves. We analyse complementary photometric observations from the Transiting Exoplanet Survey Satellite and refine the system properties and ephemeris. We find a featureless transmission spectrum with increased absorption towards shorter wavelengths. We perform an atmospheric retrieval analysis with the AURA code, finding tentative evidence for haze in the upper atmospheric layers and a lower likelihood for a dense cloud deck. Whilst our retrieval analysis results point toward clouds and hazes, further evidence is needed to definitively reject a clear-sky scenario.
We present a new ground-based optical transmission spectrum of the ultrahot Jupiter WASP-103b ($T_{eq} = 2484$K). Our transmission spectrum is the result of combining five new transits from the ACCESS survey and two new transits from the LRG-BEASTS s urvey with a reanalysis of three archival Gemini/GMOS transits and one VLT/FORS2 transit. Our combined 11-transit transmission spectrum covers a wavelength range of 3900--9450A with a median uncertainty in the transit depth of 148 parts-per-million, which is less than one atmospheric scale height of the planet. In our retrieval analysis of WASP-103bs combined optical and infrared transmission spectrum, we find strong evidence for unocculted bright regions ($4.3sigma$) and weak evidence for H$_2$O ($1.9sigma$), HCN ($1.7sigma$), and TiO ($2.1sigma$), which could be responsible for WASP-103bs observed temperature inversion. Our optical transmission spectrum shows significant structure that is in excellent agreement with the extensively studied ultrahot Jupiter WASP-121b, for which the presence of VO has been inferred. For WASP-103b, we find that VO can only provide a reasonable fit to the data if its abundance is implausibly high and we do not account for stellar activity. Our results highlight the precision that can be achieved by ground-based observations and the impacts that stellar activity from F-type stars can have on the interpretation of exoplanet transmission spectra.
87 - J. Wilson 2020
We report ground-based transmission spectroscopy of the highly irradiated and ultra-short period hot-Jupiter WASP-103b covering the wavelength range $approx$ 400-600 nm using the FORS2 instrument on the Very Large Telescope. The light curves show sig nificant time-correlated noise which is mainly invariant in wavelength and which we model using a Gaussian process. The precision of our transmission spectrum is improved by applying a common-mode correction derived from the white light curve, reaching typical uncertainties in transit depth of $approx$ 2x10$^{-4}$ in wavelength bins of 15 nm. After correction for flux contamination from a blended companion star, our observations reveal a featureless spectrum across the full range of the FORS2 observations and we are unable to confirm the Na absorption previously inferred using Gemini/GMOS or the strong Rayleigh scattering observed using broad-band light curves. We performed a Bayesian atmospheric retrieval on the full optical-infrared transmission spectrum using the additional data from Gemini/GMOS, HST/WFC3 and Spitzer observations and recover evidence for H$_2$O absorption at the 4.0$sigma$ level. However, our observations are not able to completely rule out the presence of Na, which is found at 2.0$sigma$ in our retrievals. This may in part be explained by patchy/inhomogeneous clouds or hazes damping any absorption features in our FORS2 spectrum, but an inherently small scale height also makes this feature challenging to probe from the ground. Our results nonetheless demonstrate the continuing potential of ground-based observations for investigating exoplanet atmospheres and emphasise the need for the application of consistent and robust statistical techniques to low-resolution spectra in the presence of instrumental systematics.
GJ 436b is a warm-- approximately 800 K--extrasolar planet that periodically eclipses its low-mass (half the mass of the Sun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations h ave indicated that its atmosphere has a methane-to-CO ratio that is 100,000 times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures. A recent study proposed that this unusual chemistry could be explained if the planets atmosphere is significantly enhanced in elements heavier than H and He. In this study we present complementary observations of GJ 436bs atmosphere obtained during transit. Our observations indicate that the planets transmission spectrum is effectively featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with an extremely high significance of 48 sigma. The measured spectrum is consistent with either a high cloud or haze layer located at a pressure of approximately 1 mbar or with a relatively hydrogen-poor (three percent hydrogen and helium mass fraction) atmospheric composition.
162 - E. Sedaghati 2015
In the past few years, the study of exoplanets has evolved from being pure discovery, then being more exploratory in nature and finally becoming very quantitative. In particular, transmission spectroscopy now allows the study of exoplanetary atmosphe res. Such studies rely heavily on space-based or large ground-based facilities, because one needs to perform time-resolved, high signal-to-noise spectroscopy. The very recent exchange of the prisms of the FORS2 atmospheric diffraction corrector on ESOs Very Large Telescope should allow us to reach higher data quality than was ever possible before. With FORS2, we have obtained the first optical ground-based transmission spectrum of WASP-19b, with 20 nm resolution in the 550--830 nm range. For this planet, the data set represents the highest resolution transmission spectrum obtained to date. We detect large deviations from planetary atmospheric models in the transmission spectrum redwards of 790 nm, indicating either additional sources of opacity not included in the current atmospheric models for WASP-19b or additional, unexplored sources of systematics. Nonetheless, this work shows the new potential of FORS2 for studying the atmospheres of exoplanets in greater detail than has been possible so far.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا