ترغب بنشر مسار تعليمي؟ اضغط هنا

A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b

295   0   0.0 ( 0 )
 نشر من قبل Heather Knutson
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

GJ 436b is a warm-- approximately 800 K--extrasolar planet that periodically eclipses its low-mass (half the mass of the Sun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations have indicated that its atmosphere has a methane-to-CO ratio that is 100,000 times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures. A recent study proposed that this unusual chemistry could be explained if the planets atmosphere is significantly enhanced in elements heavier than H and He. In this study we present complementary observations of GJ 436bs atmosphere obtained during transit. Our observations indicate that the planets transmission spectrum is effectively featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with an extremely high significance of 48 sigma. The measured spectrum is consistent with either a high cloud or haze layer located at a pressure of approximately 1 mbar or with a relatively hydrogen-poor (three percent hydrogen and helium mass fraction) atmospheric composition.



قيم البحث

اقرأ أيضاً

In this paper we describe a uniform analysis of eight transits and eleven secondary eclipses of the extrasolar planet GJ 436b obtained in the 3.6, 4.5, and 8.0 micron bands using the IRAC instrument on the Spitzer Space Telescope between UT 2007 June 29 and UT 2009 Feb 4. We find that the best-fit transit depths for visits in the same bandpass can vary by as much as 8% of the total (4.7 sigma significance) from one epoch to the next. Although we cannot entirely rule out residual detector effects or a time-varying, high-altitude cloud layer in the planets atmosphere as the cause of these variations, we consider the occultation of active regions on the star in a subset of the transit observations to be the most likely explanation. We reconcile the presence of magnetically active regions with the lack of significant visible or infrared flux variations from the star by proposing that the stars spin axis is tilted with respect to our line of sight, and that the planets orbit is therefore likely to be misaligned. These observations serve to illustrate the challenges associated with transmission spectroscopy of planets orbiting late-type stars; we expect that other systems, such as GJ 1214, may display comparably variable transit depths. Our measured 8 micron secondary eclipse depths are consistent with a constant value, and we place a 1 sigma upper limit of 17% on changes in the planets dayside flux in this band. Averaging over the eleven visits gives us an improved estimate of 0.0452% +/- 0.0027% for the secondary eclipse depth. We combine timing information from our observations with previously published data to produce a refined orbital ephemeris, and determine that the best-fit transit and eclipse times are consistent with a constant orbital period. [ABRIDGED]
We present ground-based optical transmission spectroscopy of the low-density hot Jupiter WASP-88b covering the wavelength range 4413-8333 {AA} with the FORS2 spectrograph on the Very Large Telescope. The FORS2 white light curves exhibit a significant time-correlated noise which we model using a Gaussian Process and remove as a wavelength-independent component from the spectroscopic light curves. We analyse complementary photometric observations from the Transiting Exoplanet Survey Satellite and refine the system properties and ephemeris. We find a featureless transmission spectrum with increased absorption towards shorter wavelengths. We perform an atmospheric retrieval analysis with the AURA code, finding tentative evidence for haze in the upper atmospheric layers and a lower likelihood for a dense cloud deck. Whilst our retrieval analysis results point toward clouds and hazes, further evidence is needed to definitively reject a clear-sky scenario.
Orbiting a M dwarf 12 pc away, the transiting exoplanet GJ 1132b is a prime target for transmission spectroscopy. With a mass of 1.7 Earth masses and radius of 1.1 Earth radii, GJ 1132bs bulk density indicates that this planet is rocky. Yet with an e quilibrium temperature of 580 K, GJ 1132b may still retain some semblance of an atmosphere. Understanding whether this atmosphere exists and its composition will be vital for understanding how the atmospheres of terrestrial planets orbiting M dwarfs evolve. We observe five transits of GJ 1132b with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We find a featureless transmission spectrum from 1.1--1.7 microns, ruling out cloud-free atmospheres with metallicities <300x Solar with >4.8$sigma$ confidence. We combine our WFC3 results with transit depths from TESS and archival broadband and spectroscopic observations to find a featureless spectrum from 0.7--4.5 microns. GJ 1132b has a high mean molecular weight atmosphere, possesses a high-altitude aerosol layer, or has effectively no atmosphere. Higher precision observations are required to differentiate between these possibilities. We explore the impact of hot and cold starspots on the observed transmission spectrum GJ 1132b, quantifying the amplitude of spot-induced transit depth features. Using a simple Poisson model we estimate spot temperature contrasts, spot covering fractions, and spot sizes for GJ 1132. These limits, and the modeling framework, may be useful for future observations of GJ 1132b or other planets transiting similarly inactive M dwarfs.
137 - M. Gillon 2007
We present Spitzer Space Telescope infrared photometry of a primary transit of the hot Neptune GJ 436b. The observations were obtained using the 8 microns band of the InfraRed Array Camera (IRAC). The high accuracy of the transit data and the weak li mb-darkening in the 8 microns IRAC band allow us to derive (assuming M = 0.44 +- 0.04 Msun for the primary) a precise value for the planetary radius (4.19 +0.21-0.16 Rearth), the stellar radius (0.463 +0.022-0.017 Rsun), the orbital inclination (85.90 +0.19-0.18 degrees) and transit timing (2454280.78186 +0.00015-0.00008 HJD). Assuming current planet models, an internal structure similar to that of Neptune with a small H/He envelope is necessary to account for the measured radius of GJ 436b.
The short period ($0.94$-day) transiting exoplanet WASP-19b is an exceptional target for transmission spectroscopy studies, due to its relatively large atmospheric scale-height ($sim 500$ km) and equilibrium temperature ($sim 2100$ K). Here we report on six precise spectroscopic Magellan/IMACS observations, five of which target the full optical window from $0.45-0.9mu$m and one targeting the $0.4-0.55mu$m blue-optical range. Five of these datasets are consistent with a transmission spectrum without any significant spectral features, while one shows a significant slope as a function of wavelength, which we interpret as arising from photospheric heterogeneities in the star. Coupled with HST/WFC3 infrared observations, our optical/near-infrared measurements point to the presence of high altitude clouds in WASP-19bs atmosphere in agreement with previous studies. Using a semi-analytical retrieval approach, considering both planetary and stellar spectral features, we find a water abundance consistent with solar for WASP-19b and strong evidence for sub-solar abundances for optical absorbers such as TiO and Na; no strong optical slope is detected, which suggests that if hazes are present, they are much weaker than previously suggested. In addition, two spot-crossing events are observed in our datasets and analyzed, including one of the first unambiguously detected bright spot-crossing events on an exoplanet host star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا