ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization techniques of Fe-doped CuO thin films deposited by the Spray Pyrolysis method

49   0   0.0 ( 0 )
 نشر من قبل Lahoucine Bahmad
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fe-doped CuO thin films were deposited onto glass substrates by Spray pyrolysis technique. The structural, micro-structural, optical and electrical properties of the synthesized samples were investigated in details. The X-Ray diffraction (XRD), Raman and Fourier Transform Infrared (FTIR) spectroscopy, confirmed that the studied samples exhibit single phase monoclinic structure of CuO. The UV-VIS spectrophotometer mentioned that the transmittance increases to 80 % when increasing the Fe concentration. Furthermore, the band gap energy of the obtained CuO was 1.29 eV. This value was slightly increased by the Fe substitution. In addition, the electrical properties of the films such as the conductivity, the mobility, the resistivity and the carrier concentration have been studied. The Hall Effect measurements confirmed the p-type conductivity of the studied films.

قيم البحث

اقرأ أيضاً

In this work thin films of the La1-xSrxCoO3 (0.05 < x < 0.26) compound were grown, employing the so-called spray pyrolysis process. The as-grown thin films exhibit polycrystalline microstructure, with uniform grain size distribution, and observable p orosity. Regarding their electrical transport properties, the produced thin films show semiconducting-like behavior, regardless the Sr doping level, which is most likely due to both the oxygen deficiencies and the grainy nature of the films. Furthermore, room temperature current-voltage (I-V) measurements reveal stable resistance switching behavior, which is well explained in terms of space-charge limited conduction mechanism. The presented experimental results provide essential evidence regarding the engagement of low cost, industrial-scale methods of growing perovskite transition metal oxide thin films, for potential applications in random access memory devices.
Simple vacuum evaporation technique for deposition of dyes on various solid surfaces has been developed. The method is compatible with conventional solvent-free nanofabrication processing enabling fabrication of nanoscale optoelectronic devices. Thin films of fluorescein were deposited on glass, fluorine-tin-oxide (FTO) coated glass with and without atomically layer deposited (ALD) nanocrystalline 20 nm thick anatase TiO2 coating. Surface topology, absorption and emission spectra of the films depends on their thickness and the material of supporting substrate. On a smooth glass surface the dye initially formes islands before merging into a uniform layer after 5 to 10 monolayers. On FTO covered glass the absorption spectra are similar to fluorescein solution in ethanol. Absorption spectra on ALD-TiO2 is red shifted compared to the film deposited on bare FTO. The corresponding emission spectra at {lambda} = 458 nm excitation show various thickness and substrate dependent features, while the emission of films deposited on TiO2 is quenched due to the effective electron transfer to the semiconductor conduction band.
We investigated structural, magnetic and electrical properties of sputter deposited Mn-Fe-Ga compounds. The crystallinity of the Mn-Fe-Ga thin films was confirmed using x-ray diffraction. X-ray reflection and atomic force microscopy measurements were utilized to investigate the surface properties, roughness, thickness and density of the deposited Mn-Fe-Ga. Depending on the stoichiometry, as well as the used substrates (SrTiO3 (001) and MgO (001)) or buffer layer (TiN) the Mn-Fe-Ga crystallizes in the cubic or the tetragonally distorted phase. Anomalous Hall effect and alternating gradient magnetometry measurements confirmed strong perpendicular magnetocrystalline anisotropy. Low saturation magnetization and hard magnetic behavior was reached by tuning the composition. Temperature dependent anomalous Hall effect measurements in a closed cycle He-cryostat showed a slight increase in coercivity with decreasing temperature (300K to 2K). TiN buffered Mn2.7Fe0.3Ga revealed sharper switching of the magnetization compared to the unbuffered layers.
Room temperature ferromagnetism was observed in n-type Fe-doped In2O3 thin films deposited on c-cut sapphire substrates by pulsed laser deposition. Structure, magnetism, composition, and transport studies indicated that Fe occupied the In sites of th e In2O3 lattice rather than formed any metallic Fe or other magnetic impurity phases. Magnetic moments of films were proved to be intrinsic and showed to have a strong dependence on the carrier densities which depended on the Fe concentration and its valance state as well as oxygen pressure.
We present a detailed low-energy muon spin rotation and x-ray magnetic circular dichroism (XMCD) investigation of the magnetic structure in ultra-thin tetragonal (T)-CuO films. The measured muon-spin polarization decay indicates an antiferromagnetic (AFM) order with a transition temperature higher than 200K. The XMCD signal obtained around the Cu $L_{2,3}$ edges indicates the presence of pinned Cu$^{2+}$ moments that are parallel to the sample surface, and additionally, isotropic paramagnetic moments. The pinning of some of the Cu moments is caused by an AFM ordering consisting of moments that lie most likely in the plane of the film. Moreover, pinned moments show a larger orbital magnetic moment contribution with an approximate ratio of $m_{orb}/m_{spin} = 2$, indicating that these spins are located at sites with reduced symmetry. Some fractions of the pinned moments remain pinned from an AFM background even at 360K, indicating that $T_N >$ 360K. A simple model could explain qualitatively these experimental findings; however, it is in contrast to theoretical predictions, showing that the magnetic properties of ultra-thin T-CuO films differ from bulk expectations and is more complex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا