ﻻ يوجد ملخص باللغة العربية
Partial person re-identification involves matching pedestrian frames where only a part of a body is visible in corresponding images. This reflects practical CCTV surveillance scenario, where full person views are often not available. Missing body parts make the comparison very challenging due to significant misalignment and varying scale of the views. We propose Partial Matching Net (PMN) that detects body joints, aligns partial views and hallucinates the missing parts based on the information present in the frame and a learned model of a person. The aligned and reconstructed views are then combined into a joint representation and used for matching images. We evaluate our approach and compare to other methods on three different datasets, demonstrating significant improvements.
Partial person re-identification (re-id) is a challenging problem, where only several partial observations (images) of people are available for matching. However, few studies have provided flexible solutions to identifying a person in an image contai
Person re-identification (ReID) has achieved significant improvement under the single-domain setting. However, directly exploiting a model to new domains is always faced with huge performance drop, and adapting the model to new domains without target
The misalignment of human images caused by pedestrian detection bounding box errors or partial occlusions is one of the main challenges in person Re-Identification (Re-ID) tasks. Previous local-based methods mainly focus on learning local features in
Most state-of-the-art person re-identification (re-id) methods depend on supervised model learning with a large set of cross-view identity labelled training data. Even worse, such trained models are limited to only the same-domain deployment with sig
Person re-identification (re-id) suffers from a serious occlusion problem when applied to crowded public places. In this paper, we propose to retrieve a full-body person image by using a person image with occlusions. This differs significantly from t