ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Spatial Feature Reconstruction for Partial Person Re-identification: Alignment-Free Approach

66   0   0.0 ( 0 )
 نشر من قبل He Lingxiao
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Partial person re-identification (re-id) is a challenging problem, where only several partial observations (images) of people are available for matching. However, few studies have provided flexible solutions to identifying a person in an image containing arbitrary part of the body. In this paper, we propose a fast and accurate matching method to address this problem. The proposed method leverages Fully Convolutional Network (FCN) to generate fix-sized spatial feature maps such that pixel-level features are consistent. To match a pair of person images of different sizes, a novel method called Deep Spatial feature Reconstruction (DSR) is further developed to avoid explicit alignment. Specifically, DSR exploits the reconstructing error from popular dictionary learning models to calculate the similarity between different spatial feature maps. In that way, we expect that the proposed FCN can decrease the similarity of coupled images from different persons and increase that from the same person. Experimental results on two partial person datasets demonstrate the efficiency and effectiveness of the proposed method in comparison with several state-of-the-art partial person re-id approaches. Additionally, DSR achieves competitive results on a benchmark person dataset Market1501 with 83.58% Rank-1 accuracy.

قيم البحث

اقرأ أيضاً

Re-identifying a person across multiple disjoint camera views is important for intelligent video surveillance, smart retailing and many other applications. However, existing person re-identification (ReID) methods are challenged by the ubiquitous occ lusion over persons and suffer from performance degradation. This paper proposes a novel occlusion-robust and alignment-free model for occluded person ReID and extends its application to realistic and crowded scenarios. The proposed model first leverages the full convolution network (FCN) and pyramid pooling to extract spatial pyramid features. Then an alignment-free matching approach, namely Foreground-aware Pyramid Reconstruction (FPR), is developed to accurately compute matching scores between occluded persons, despite their different scales and sizes. FPR uses the error from robust reconstruction over spatial pyramid features to measure similarities between two persons. More importantly, we design an occlusion-sensitive foreground probability generator that focuses more on clean human body parts to refine the similarity computation with less contamination from occlusion. The FPR is easily embedded into any end-to-end person ReID models. The effectiveness of the proposed method is clearly demonstrated by the experimental results (Rank-1 accuracy) on three occluded person datasets: Partial REID (78.30%), Partial iLIDS (68.08%) and Occluded REID (81.00%); and three benchmark person datasets: Market1501 (95.42%), DukeMTMC (88.64%) and CUHK03 (76.08%)
Partial person re-identification involves matching pedestrian frames where only a part of a body is visible in corresponding images. This reflects practical CCTV surveillance scenario, where full person views are often not available. Missing body par ts make the comparison very challenging due to significant misalignment and varying scale of the views. We propose Partial Matching Net (PMN) that detects body joints, aligns partial views and hallucinates the missing parts based on the information present in the frame and a learned model of a person. The aligned and reconstructed views are then combined into a joint representation and used for matching images. We evaluate our approach and compare to other methods on three different datasets, demonstrating significant improvements.
The misalignment of human images caused by pedestrian detection bounding box errors or partial occlusions is one of the main challenges in person Re-Identification (Re-ID) tasks. Previous local-based methods mainly focus on learning local features in predefined semantic regions of pedestrians, usually use local hard alignment methods or introduce auxiliary information such as key human pose points to match local features. These methods are often not applicable when large scene differences are encountered. Targeting to solve these problems, we propose a simple and efficient Local Sliding Alignment (LSA) strategy to dynamically align the local features of two images by setting a sliding window on the local stripes of the pedestrian. LSA can effectively suppress spatial misalignment and does not need to introduce extra supervision information. Then, we design a Global-Local Dynamic Feature Alignment Network (GLDFA-Net) framework, which contains both global and local branches. We introduce LSA into the local branch of GLDFA-Net to guide the computation of distance metrics, which can further improve the accuracy of the testing phase. Evaluation experiments on several mainstream evaluation datasets including Market-1501, DukeMTMC-reID, and CUHK03 show that our method has competitive accuracy over the several state-of-the-art person Re-ID methods. Additionally, it achieves 86.1% mAP and 94.8% Rank-1 accuracy on Market1501.
Visual attention has proven to be effective in improving the performance of person re-identification. Most existing methods apply visual attention heuristically by learning an additional attention map to re-weight the feature maps for person re-ident ification. However, this kind of methods inevitably increase the model complexity and inference time. In this paper, we propose to incorporate the attention learning as additional objectives in a person ReID network without changing the original structure, thus maintain the same inference time and model size. Two kinds of attentions have been considered to make the learned feature maps being aware of the person and related body parts respectively. Globally, a holistic attention branch (HAB) makes the feature maps obtained by backbone focus on persons so as to alleviate the influence of background. Locally, a partial attention branch (PAB) makes the extracted features be decoupled into several groups and be separately responsible for different body parts (i.e., keypoints), thus increasing the robustness to pose variation and partial occlusion. These two kinds of attentions are universal and can be incorporated into existing ReID networks. We have tested its performance on two typical networks (TriNet and Bag of Tricks) and observed significant performance improvement on five widely used datasets.
Feature representation and metric learning are two critical components in person re-identification models. In this paper, we focus on the feature representation and claim that hand-crafted histogram features can be complementary to Convolutional Neur al Network (CNN) features. We propose a novel feature extraction model called Feature Fusion Net (FFN) for pedestrian image representation. In FFN, back propagation makes CNN features constrained by the handcrafted features. Utilizing color histogram features (RGB, HSV, YCbCr, Lab and YIQ) and texture features (multi-scale and multi-orientation Gabor features), we get a new deep feature representation that is more discriminative and compact. Experiments on three challenging datasets (VIPeR, CUHK01, PRID450s) validates the effectiveness of our proposal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا