ﻻ يوجد ملخص باللغة العربية
A tripartite-circle drawing of a tripartite graph is a drawing in the plane, where each part of a vertex partition is placed on one of three disjoint circles, and the edges do not cross the circles. The tripartite-circle crossing number of a tripartite graph is the minimum number of edge crossings among all tripartite-circle drawings. We determine the tripartite-circle crossing number of $K_{2,2,n}$.
A tripartite-circle drawing of a tripartite graph is a drawing in the plane, where each part of a vertex partition is placed on one of three disjoint circles, and the edges do not cross the circles. We present upper and lower bounds on the minimum nu
We bound the number of minimal hypergraph transversals that arise in tri-partite 3-uniform hypergraphs, a class commonly found in applications dealing with data. Let H be such a hypergraph on a set of vertices V. We give a lower bound of 1.4977 |V | and an upper bound of 1.5012 |V | .
A frequency $n$-cube $F^n(4;2,2)$ is an $n$-dimensional $4$-by-...-by-$4$ array filled by $0$s and $1$s such that each line contains exactly two $1$s. We classify the frequency $4$-cubes $F^4(4;2,2)$, find a testing set of size $25$ for $F^3(4;2,2)$,
A graph $G$ is called $F$-saturated if $G$ does not contain $F$ as a subgraph (not necessarily induced) but the addition of any missing edge to $G$ creates a copy of $F$. The saturation number of $F$, denoted by $sat(n,F)$, is the minimum number of e
For a simple graph $G$, let $chi_f(G)$ be the fractional chromatic number of $G$. In this paper, we aim to establish upper bounds on $chi_f(G)$ for those graphs $G$ with restrictions on the clique number. Namely, we prove that for $Delta geq 4$, if $