ﻻ يوجد ملخص باللغة العربية
The study of multiplicity distributions of identified particles in terms of their higher moments is at the focus of contemporary experimental and theoretical studies. In a thermalized system, combinations of these moments are directly related to the Equation of State (EoS). The ultimate goal of the experimental measurements in relativistic nuclear collisions is, by systematic comparison to QCD and QCD inspired calculations, to probe the dynamics of genuine phase transitions between a hadron gas and the quark-gluon plasma. However, the comparison between experiment and theory is far from trivial, because several non-dynamical effects on fluctuations need to be controlled prior to a meaningful comparison to theoretical predictions. In this report we present quantitative estimates for these non-dynamical contributions using the Canonical Ensemble (CE) formulation of statistical mechanics. Together with analytical formulas we provide also results from Monte Carlo (MC) simulations within the CE and compare our predictions with the corresponding measurements from the STAR experiment.
We initialize the Quantum Chromodynamic conserved charges of baryon number, strangeness, and electric charge arising from gluon splitting into quark-antiquark pairs for the initial conditions of relativistic heavy-ion collisions. A new Monte Carlo pr
In this report we present the first quantitative determination of the correlations between baryons and anti-baryons induced by local baryon number conservation. This is important in view of the many experimental studies aiming at probing the phase st
We construct net baryon number and strangeness susceptibilities as well as correlations between electric charge, strangeness and baryon number from experimental data on the particle production yields at midrapidity of the ALICE Collaboration at CERN.
Event-by-event fluctuations of conserved charges - such as electric charge, strangeness, and baryon number - in ultrarelativistic heavy-ion collisions provide insight into the properties of the quark-gluon plasma and the QCD phase diagram. They can b
We study non-Einstein Bach-flat gravitational instanton solutions that can be regarded as the generalization of the Taub-NUT/Bolt and Eguchi-Hanson solutions of Einstein gravity to conformal gravity. These solutions include non-Einstein spaces which