ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher Width Moonshine

196   0   0.0 ( 0 )
 نشر من قبل Madeline Locus Dawsey
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

textit{Weak moonshine} for a finite group $G$ is the phenomenon where an infinite dimensional graded $G$-module $$V_G=bigoplus_{ngg-infty}V_G(n)$$ has the property that its trace functions, known as McKay-Thompson series, are modular functions. Recent work by DeHority, Gonzalez, Vafa, and Van Peski established that weak moonshine holds for every finite group. Since weak moonshine only relies on character tables, which are not isomorphism class invariants, non-isomorphic groups can have the same McKay-Thompson series. We address this problem by extending weak moonshine to arbitrary width $sinmathbb{Z}^+$. For each $1leq rleq s$ and each irreducible character $chi_i$, we employ Frobenius $r$-character extension $chi_i^{(r)} colon G^{(r)}rightarrowmathbb{C}$ to define textit{width $r$ McKay-Thompson series} for $V_G^{(r)}:=V_Gtimescdotstimes V_G$ ($r$ copies) for each $r$-tuple in $G^{(r)}:=Gtimescdotstimes G$ ($r$ copies). These series are modular functions which then reflect differences between $r$-character values. Furthermore, we establish orthogonality relations for the Frobenius $r$-characters, which dictate the compatibility of the extension of weak moonshine for $V_G$ to width $s$ weak moonshine.



قيم البحث

اقرأ أيضاً

Mathieu Moonshine, the observation that the Fourier coefficients of the elliptic genus on K3 can be interpreted as dimensions of representations of the Mathieu group M24, has been proven abstractly, but a conceptual understanding in terms of a repres entation of the Mathieu group on the BPS states, is missing. Some time ago, Taormina and Wendland showed that such an action can be naturally defined on the lowest non-trivial BPS states, using the idea of `symmetry surfing, i.e., by combining the symmetries of different K3 sigma models. In this paper we find non-trivial evidence that this construction can be generalized to all BPS states.
The flavor moonshine hypothesis is formulated to suppose that all particle masses (leptons, quarks, Higgs and gauge particles -- more precisely, their mass ratios) are expressed as coefficients in the Fourier expansion of some modular forms just as, in mathematics, dimensions of representations of a certain group are expressed as coefficients in the Fourier expansion of some modular forms. The mysterious hierarchical structure of the quark and lepton masses is thus attributed to that of the Fourier coefficient matrices of certain modular forms. Our intention here is not to prove this hypothesis starting from some physical assumptions but rather to demonstrate that this hypothesis is experimentally verified and, assuming that the string theory correctly describes the natural law, to calculate the geometry (K{a}hler potential and the metric) of the moduli space of the Calabi-Yau manifold, thus providing a way to calculate the metric of Calabi-Yau manifold itself directly from the experimental data.
Let $mathcal{M}$ be a small $n$-abelian category. We show that the category of finitely presented functors $mod$-$mathcal{M}$ modulo the subcategory of effaceable functors $mod_0$-$mathcal{M}$ has an $n$-cluster tilting subcategory which is equivalen t to $mathcal{M}$. This gives a higher-dimensional version of Auslanders formula.
We determine the composition factors of a Jordan-Holder series including multiplicities of the locally analytic Steinberg representation. For this purpose we prove the acyclicity of the evaluated locally analytic Tits complex giving rise to the Stein berg representation. Further we describe some analogue of the Jacquet functor applied to the irreducible principal series representation constructed by Orlik and Strauch.
118 - Pascal Boyer 2008
We study the reduction modulo $l$ of some elliptic representations; for each of these representations, we give a particular lattice naturally obtained by parabolic induction in giving the graph of extensions between its irreducible sub-quotient of it s reduction modulo $l$. The principal motivation for this work, is that these lattices appear in the cohomology of Lubin-Tate towers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا