ﻻ يوجد ملخص باللغة العربية
We study the reduction modulo $l$ of some elliptic representations; for each of these representations, we give a particular lattice naturally obtained by parabolic induction in giving the graph of extensions between its irreducible sub-quotient of its reduction modulo $l$. The principal motivation for this work, is that these lattices appear in the cohomology of Lubin-Tate towers.
The principal result of this work is the freeness in the $ overline{mathbb Z}_l$-cohomology of the Lubin-Tate tower. The strategy is of global nature and relies on studying the filtration of stratification of the perverse sheaf of vanishing cycles of
Let $F$ be a quadratic extension of $mathbb{Q}_p$. We prove that smooth irreducible supersingular representations with central character of $mathrm{GL}_2(F)$ are not of finite presentation.
We prove that, over any elliptic global Langlands parameter $sigma$, the cuspidal cohomology groups of moduli stacks of shtukas are given by a formula involving a finite dimensional representation of the centralizer of $sigma$. It is a first step in the direction of Arthur-Kottwitz conjectures.
We show that Lubin-Tate spectra at the prime $2$ are Real oriented and Real Landweber exact. The proof is by application of the Goerss-Hopkins-Miller theorem to algebras with involution. For each height $n$, we compute the entire homotopy fixed point
Petri-nets are a simple formalism for modeling concurrent computation. Recently, they have emerged as a powerful tool for the modeling and analysis of biochemical reaction networks, bridging the gap between purely qualitative and quantitative models.