ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytic Epsilon Expansions of Master Integrals Corresponding to Massless Three-Loop Form Factors and Three-Loop g-2 up to Four-Loop Transcendentality Weight

125   0   0.0 ( 0 )
 نشر من قبل Roman Nikolaevich Lee
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate analytically higher terms of the epsilon-expansion of the three-loop master integrals corresponding to three-loop quark and gluon form factors and to the three-loop master integrals contributing to the electron g-2 in QED up to the transcendentality weight typical to four-loop calculations, i.e. eight and seven, respectively. The calculation is based on a combination of a method recently suggested by one of the authors (R.L.) with other techniques: sector decomposition implemented in FIESTA, the method of Mellin--Barnes representation, and the PSLQ algorithm.



قيم البحث

اقرأ أيضاً

We evaluate a Laurent expansion in dimensional regularization parameter $epsilon=(4-d)/2$ of all the master integrals for four-loop massless propagators up to transcendentality weight twelve, using a recently developed method of one of the present co authors (R.L.) and extending thereby results by Baikov and Chetyrkin obtained at transcendentality weight seven. We observe only multiple zeta values in our results. Therefore, we conclude that all the four-loop massless propagator integrals, with any integer powers of numerators and propagators, have only multiple zeta values in their epsilon expansions up to transcendentality weight twelve.
We evaluate, exactly in d, the master integrals contributing to massless three-loop QCD form factors. The calculation is based on a combination of a method recently suggested by one of the authors (R.L.) with other techniques: sector decomposition im plemented in FIESTA, the method of Mellin--Barnes representation, and the PSLQ algorithm. Using our results for the master integrals we obtain analytical expressions for two missing constants in the ep-expansion of the two most complicated master integrals and present the form factors in a completely analytic form.
We present the complete set of planar master integrals relevant to the calculation of three-point functions in four-loop massless Quantum Chromodynamics. Employing direct parametric integrations for a basis of finite integrals, we give analytic resul ts for the Laurent expansion of conventional integrals in the parameter of dimensional regularization through to terms of weight eight.
132 - A.V. Smirnov , M. Tentyukov 2010
We present numerical results which are needed to evaluate all non-trivial master integrals for four-loop massless propagators, confirming the recent analytic results of[1]and evaluating an extra order in $ep$ expansion for each master integral.
We evaluate three typical four-loop non-planar massless propagator diagrams in a Taylor expansion in dimensional regularization parameter $epsilon=(4-d)/2$ up to transcendentality weight twelve, using a recently developed method of one of the present coauthors (R.L.). We observe only multiple zeta values in our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا