ترغب بنشر مسار تعليمي؟ اضغط هنا

An analysis of over-relaxation in kinetic approximation

53   0   0.0 ( 0 )
 نشر من قبل Philippe Helluy
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The over-relaxation approach is an alternative to the Jin-Xin relaxation method (Jin and Xin [1]) in order to apply the equilibrium source term in a more precise way (Coulette et al. [2, 3]). This is also a key ingredient of the Lattice-Boltzmann method for achieving second order accuracy (Dellar [4]). In this work we provide an analysis of the over-relaxation kinetic scheme. We compute its equivalent equation, which is particularly useful for devising stable boundary conditions for the hidden kinetic variables.



قيم البحث

اقرأ أيضاً

87 - David Coulette 2018
We construct a high order discontinuous Galerkin method for solving general hyperbolic systems of conservation laws. The method is CFL-less, matrix-free, has the complexity of an explicit scheme and can be of arbitrary order in space and time. The co nstruction is based on: (a) the representation of the system of conservation laws by a kinetic vectorial representation with a stiff relaxation term; (b) a matrix-free, CFL-less implicit discontinuous Galerkin transport solver; and (c) a stiffly accurate composition method for time integration. The method is validated on several one-dimensional test cases. It is then applied on two-dimensional and three-dimensional test cases: flow past a cylinder, magnetohydrodynamics and multifluid sedimentation.
The Surface Cauchy-Born (SCB) method is a computational multi-scale method for the simulation of surface-dominated crystalline materials. We present an error analysis of the SCB method, focused on the role of surface relaxation. In a linearized 1D mo del we show that the error committed by the SCB method is O(1) in the mesh size; however, we are able to identify an alternative approximation parameter - the stiffness of the interaction potential - with respect to which the error in the mean strain is exponentially small. Our analysis naturally suggests an improvement of the SCB model by enforcing atomistic mesh spacing in the normal direction at the free boundary.
In this paper we present and implement the Palindromic Discontinuous Galerkin (PDG) method in dimensions higher than one. The method has already been exposed and tested in [4] in the one-dimensional context. The PDG method is a general implicit high order method for approximating systems of conservation laws. It relies on a kinetic interpretation of the conservation laws containing stiff relaxation terms. The kinetic system is approximated with an asymptotic-preserving high order DG method. We describe the parallel implementation of the method, based on the StarPU runtime library. Then we apply it on preliminary test cases.
In this work we introduce a moving mask approximation to describe the dynamics of austenite to martensite phase transitions at a continuum level. In this framework, we prove a new type of Hadamard jump condition, from which we deduce that the deforma tion gradient must be of the form $mathsf{1} +mathbf{a}otimes mathbf{n}$ a.e. in the martensite phase. This is useful to better understand the complex microstructures and the formation of curved interfaces between phases in new ultra-low hysteresis alloys such as Zn45Au30Cu25, and provides a selection mechanism for physically-relevant energy-minimising microstructures. In particular, we use the new type of Hadamard jump condition to deduce a rigidity theorem for the two well problem. The latter provides more insight on the cofactor conditions, particular conditions of supercompatibility between phases believed to influence reversibility of martensitic transformations.
We present a detailed description of the kinetic Activation-Relaxation Technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo algorithm with on-the-fly event search. Combining a topological classification for local environments and even t generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe and structural relaxation in a-Si (amorphous silicon).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا