ترغب بنشر مسار تعليمي؟ اضغط هنا

High-order implicit palindromic discontinuous Galerkin method for kinetic-relaxation approximation

88   0   0.0 ( 0 )
 نشر من قبل Philippe Helluy
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف David Coulette




اسأل ChatGPT حول البحث

We construct a high order discontinuous Galerkin method for solving general hyperbolic systems of conservation laws. The method is CFL-less, matrix-free, has the complexity of an explicit scheme and can be of arbitrary order in space and time. The construction is based on: (a) the representation of the system of conservation laws by a kinetic vectorial representation with a stiff relaxation term; (b) a matrix-free, CFL-less implicit discontinuous Galerkin transport solver; and (c) a stiffly accurate composition method for time integration. The method is validated on several one-dimensional test cases. It is then applied on two-dimensional and three-dimensional test cases: flow past a cylinder, magnetohydrodynamics and multifluid sedimentation.



قيم البحث

اقرأ أيضاً

The high-order hybridizable discontinuous Galerkin (HDG) method combining with an implicit iterative scheme is used to find the steady-state solution of the Boltzmann equation with full collision integral on two-dimensional triangular meshes. The vel ocity distribution function and its trace are approximated in the piecewise polynomial space of degree up to 4. The fast spectral method (FSM) is incorporated into the DG discretization to evaluate the collision operator. Specific polynomial approximation is proposed for the collision term to reduce the computational cost. The proposed scheme is proved to be accurate and efficient.
As an extension of our previous work in Sun et.al (2018) [41], we develop a discontinuous Galerkin method for solving cross-diffusion systems with a formal gradient flow structure. These systems are associated with non-increasing entropy functionals. For a class of problems, the positivity (non-negativity) of solutions is also expected, which is implied by the physical model and is crucial to the entropy structure. The semi-discrete numerical scheme we propose is entropy stable. Furthermore, the scheme is also compatible with the positivity-preserving procedure in Zhang (2017) [42] in many scenarios. Hence the resulting fully discrete scheme is able to produce non-negative solutions. The method can be applied to both one-dimensional problems and two-dimensional problems on Cartesian meshes. Numerical examples are given to examine the performance of the method.
The mass flow rate of Poiseuille flow of rarefied gas through long ducts of two-dimensional cross-sections with arbitrary shape are critical in the pore-network modeling of gas transport in porous media. In this paper, for the first time, the high-or der hybridizable discontinuous Galerkin (HDG) method is used to find the steady-state solution of the linearized Bhatnagar-Gross-Krook equation on two-dimensional triangular meshes. The velocity distribution function and its traces are approximated in the piecewise polynomial space (of degree up to 4) on the triangular meshes and the mesh skeletons, respectively. By employing a numerical flux that is derived from the first-order upwind scheme and imposing its continuity on the mesh skeletons, global systems for unknown traces are obtained with a few coupled degrees of freedom. To achieve fast convergence to the steady-state solution, a diffusion-type equation for flow velocity that is asymptotic-preserving into the fluid dynamic limit is solved by the HDG simultaneously, on the same meshes. The proposed HDG-synthetic iterative scheme is proved to be accurate and efficient. Specifically, for flows in the near-continuum regime, numerical simulations have shown that, to achieve the same level of accuracy, our scheme could be faster than the conventional iterative scheme by two orders of magnitude, while it is faster than the synthetic iterative scheme based on the finite difference discretization in the spatial space by one order of magnitude. The HDG-synthetic iterative scheme is ready to be extended to simulate rarefied gas mixtures and the Boltzmann collision operator.
Discontinuous Galerkin (DG) methods for hyperbolic partial differential equations (PDEs) with explicit time-stepping schemes, such as strong stability-preserving Runge-Kutta (SSP-RK), suffer from time-step restrictions that are significantly worse th an what a simple Courant-Friedrichs-Lewy (CFL) argument requires. In particular, the maximum stable time-step scales inversely with the highest degree in the DG polynomial approximation space and becomes progressively smaller with each added spatial dimension. In this work we introduce a novel approach that we have dubbed the regionally implicit discontinuous Galerkin (RIDG) method to overcome these small time-step restrictions. The RIDG method is based on an extension of the Lax-Wendroff DG (LxW-DG) method, which previously had been shown to be equivalent to a predictor-corrector approach, where the predictor is a locally implicit spacetime method (i.e., the predictor is something like a block-Jacobi update for a fully implicit spacetime DG method). The corrector is an explicit method that uses the spacetime reconstructed solution from the predictor step. In this work we modify the predictor to include not just local information, but also neighboring information. With this modification we show that the stability is greatly enhanced; in particular, we show that we are able to remove the polynomial degree dependence of the maximum time-step and show how this extends to multiple spatial dimensions. A semi-analytic von Neumann analysis is presented to theoretically justify the stability claims. Convergence and efficiency studies for linear and nonlinear problems in multiple dimensions are accomplished using a MATLAB code that can be freely downloaded.
The over-relaxation approach is an alternative to the Jin-Xin relaxation method (Jin and Xin [1]) in order to apply the equilibrium source term in a more precise way (Coulette et al. [2, 3]). This is also a key ingredient of the Lattice-Boltzmann met hod for achieving second order accuracy (Dellar [4]). In this work we provide an analysis of the over-relaxation kinetic scheme. We compute its equivalent equation, which is particularly useful for devising stable boundary conditions for the hidden kinetic variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا