ﻻ يوجد ملخص باللغة العربية
We study a new class of non-Hermitian topological phases in three dimension in the absence of any symmetry, where the topological robust band degeneracies are Hopf-link exceptional lines. As a concrete example, we investigate the non-Hermitian band structures of nodal line semimetals under non-Hermitian perturbations, where the Fermi surfaces can transit from 1d nodal lines to 2d twisting surfaces with Hopf-link boundaries when the winding number defined along the nodal line is $pm 1$. The linking numbers of these linked exceptional line phases are also proposed, based on the integral of Chern-Simons form over the Brillouin zone.
We consider a 3-dimensional (3D) non-Hermitian exceptional line semimetal model and take open boundary conditions in x, y, and z directions separately. In each case, we calculate the parameter regions where the bulk-boundary correspondence is broken.
Without the constraint imposed by Hermiticity, non-Hermitian systems enjoy greater freedom than Hermitian ones. While the non-Hermitian ramification of non-spatial (internal) symmetries has been revealed, spatial symmetries remain to be explored. Her
In this article we study 3D non-Hermitian higher-order Dirac semimetals (NHHODSMs). Our focus is on $C_4$-symmetric non-Hermitian systems where we investigate inversion ($mathcal{I}$) or time-reversal ($mathcal{T}$) symmetric models of NHHODSMs havin
We study non-Hermitian higher-order Weyl semimetals (NHHOWSMs) possessing real spectra and having inversion $mathcal{I}$ ($mathcal{I}$-NHHOWSM) or time-reversal symmetry $mathcal{T}$ ($mathcal{T}$-NHHOWSM). When the reality of bulk spectra is lost, t
Alternating current RLC electric circuits form an accessible and highly tunable platform simulating Hermitian as well as non-Hermitian (nH) quantum systems. We propose here a circuit realization of nH Dirac and Weyl Hamiltonians subject to time-rever