ﻻ يوجد ملخص باللغة العربية
We investigate the dynamics of quantum entanglement and more general quantum correlations quantified respectively via negativity and local quantum uncertainty for two qubit systems undergoing Markovian collective dephasing. Focusing on a two-parameter family of initial two-qubit density matrices, we study the relation of the emergence of the curious phenomenon of time-invariant entanglement and the dynamical behavior of local quantum uncertainty. Developing an illustrative geometric approach, we demonstrate the existence of distinct regions of quantum entanglement for the considered initial states and identify the region that allows for completely frozen entanglement throughout the dynamics, accompanied by generation of local quantum uncertainty. Furthermore, we present a systematic analysis of different dynamical behaviors of local quantum uncertainty such as its sudden change or smooth amplification, in relation with the dynamics of entanglement.
Most studies of collective dephasing for bipartite as well as multipartite quantum systems focus on a very specific orientation of magnetic field, that is, z-orientation. However, in practical situations, there are always small fluctuations in stocha
We introduce a scheme for remote entanglement generation for the photon polarization. The technique is based on transferring the initial frequency correlations to specific polarization-frequency correlations by local dephasing and their subsequent re
We revisit qubit-qutrit quantum systems under collective dephasing and answer some of the questions which have not been asked and addressed so far in the literature. In particular, we examine the possibilities of non-trivial phenomena of {it time-inv
Simultaneous quantum estimation of multiple parameters has recently become essential in quantum metrology. Although the ultimate sensitivity of a multiparameter quantum estimation in noiseless environments can beat the standard quantum limit that eve
Entanglement between two quantum systems is a resource in quantum information, but dissipation usually destroys it. In this article we consider two qubits without direct interaction and we show that, even in cases where the open system dynamics destr