ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiparameter quantum estimation under dephasing noise

383   0   0.0 ( 0 )
 نشر من قبل Le Ho Bin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Simultaneous quantum estimation of multiple parameters has recently become essential in quantum metrology. Although the ultimate sensitivity of a multiparameter quantum estimation in noiseless environments can beat the standard quantum limit that every classical sensor is bounded by, it is unclear whether the quantum sensor has an advantage over the classical one under realistic noise. In this work, we present a framework of the simultaneous estimation of multiple parameters with quantum sensors in a certain noisy environment. Our multiple parameters to be estimated are three components of an external magnetic field, and we consider the noise that causes only dephasing. We show that there is an optimal sensing time in the noisy environment and the sensitivity can beat the standard quantum limit when the noisy environment is non-Markovian.

قيم البحث

اقرأ أيضاً

The quantum multiparameter estimation is very different from the classical multiparameter estimation due to Heisenbergs uncertainty principle in quantum mechanics. When the optimal measurements for different parameters are incompatible, they cannot b e jointly performed. We find a correspondence relationship between the inaccuracy of a measurement for estimating the unknown parameter with the measurement error in the context of measurement uncertainty relations. Taking this correspondence relationship as a bridge, we incorporate Heisenbergs uncertainty principle into quantum multiparameter estimation by giving a tradeoff relation between the measurement inaccuracies for estimating different parameters. For pure quantum states, this tradeoff relation is tight, so it can reveal the true quantum limits on individual estimation errors in such cases. We apply our approach to derive the tradeoff between attainable errors of estimating the real and imaginary parts of a complex signal encoded in coherent states and obtain the joint measurements attaining the tradeoff relation. We also show that our approach can be readily used to derive the tradeoff between the errors of jointly estimating the phase shift and phase diffusion without explicitly parameterizing quantum measurements.
It was suggested in Ref. [Phys. Rev. Lett. 114, 170802] that optical networks with relatively inexpensive overhead---single photon Fock states, passive optical elements, and single photon detection---can show significant improvements over classical s trategies for single-parameter estimation, when the number of modes in the network is small (n < 7). A similar case was made in Ref. [Phys. Rev. Lett. 111, 070403] for multi-parameter estimation, where measurement is instead made using photon-number resolving detectors. In this paper, we analytically compute the quantum Cramer-Rao bound to show these networks can have a constant-factor quantum advantage in multi-parameter estimation for even large number of modes. Additionally, we provide a simplified measurement scheme using only single-photon (on-off) detectors that is capable of approximately obtaining this sensitivity for a small number of modes.
One of the fundamental tasks in quantum metrology is to estimate multiple parameters embedded in a noisy process, i.e., a quantum channel. In this paper, we study fundamental limits to quantum channel estimation via the concept of amortization and th e right logarithmic derivative (RLD) Fisher information value. Our key technical result is the proof of a chain-rule inequality for the RLD Fisher information value, which implies that amortization, i.e., access to a catalyst state family, does not increase the RLD Fisher information value of quantum channels. This technical result leads to a fundamental and efficiently computable limitation for multiparameter channel estimation in the sequential setting, in terms of the RLD Fisher information value. As a consequence, we conclude that if the RLD Fisher information value is finite, then Heisenberg scaling is unattainable in the multiparameter setting.
69 - Ranjith Nair 2018
The problem of estimating multiple loss parameters of an optical system using the most general ancilla-assisted parallel strategy is solved under energy constraints. An upper bound on the quantum Fisher information matrix is derived assuming that the environment modes involved in the loss interaction can be accessed. Any pure-state probe that is number-diagonal in the modes interacting with the loss elements is shown to exactly achieve this upper bound even if the environment modes are inaccessible, as is usually the case in practice. We explain this surprising phenomenon, and show that measuring the Schmidt bases of the probe is a parameter-independent optimal measurement. Our results imply that multiple copies of two-mode squeezed vacuum probes with an arbitrarily small nonzero degree of squeezing, or probes prepared using single-photon states and linear optics can achieve quantum-optimal performance in conjunction with on-off detection. We also calculate explicitly the energy-constrained Bures distance between any two product loss channels. Our results are relevant to standoff image sensing, biological imaging, absorption spectroscopy, and photodetector calibration.
We address the use of asymptotic incompatibility (AI) to assess the quantumness of a multiparameter quantum statistical model. AI is a recently introduced measure which quantifies the difference between the Holevo and the SLD scalar bounds, and can b e evaluated using only the symmetric logarithmic derivative (SLD) operators of the model. At first, we evaluate analytically the AI of the most general quantum statistical models involving two-level (qubit) and single-mode Gaussian continuous-variable quantum systems, and prove that AI is a simple monotonous function of the state purity. Then, we numerically investigate the same problem for qudits ($d$-dimensional quantum systems, with $2 < d leq 4$), showing that, while in general AI is not in general a function of purity, we have enough numerical evidence to conclude that the maximum amount of AI is achievable only for quantum statistical models characterized by a purity larger than $mu_{sf min} = 1/(d-1)$. In addition, by parametrizing qudit states as thermal (Gibbs) states, numerical results suggest that, once the spectrum of the Hamiltonian is fixed, the AI measure is in one-to-one correspondence with the fictitious temperature parameter $beta$ characterizing the family of density operators. Finally, by studying in detail the definition and properties of the AI measure we find that: i) given a quantum statistical model, one can readily identify the maximum number of asymptotically compatibile parameters; ii) the AI of a quantum statistical model bounds from above the AI of any sub-model that can be defined by fixing one or more of the original unknown parameters (or functions thereof), leading to possibly useful bounds on the AI of models involving noisy quantum dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا