ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating kpc-scale radio emission properties of narrow-line Seyfert 1 galaxies

72   0   0.0 ( 0 )
 نشر من قبل Veeresh Singh Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, several Radio-Loud Narrow-Line Seyfert 1 galaxies (RL-NLS1) possessing relativistic jets have come into attention with their detections in Very Large Baseline Array (VLBA) and in $gamma$-ray observations. In this paper we attempt to understand the nature of radio-jets in NLS1s by examining the kpc-scale radio properties of, hitherto, the largest sample of 11101 optically-selected NLS1s. Using 1.4 GHz FIRST, 1.4 GHz NVSS, 327 MHz WENNS, and 150 MHz TGSS catalogues we find the radio-detection of merely $sim$ 4.5 per cent (498/11101) NLS1s, with majority (407/498 $sim$ 81.7 per cent) of them being RL-NLS1s. Our study yields the highest number of RL-NLS1s and it can only be a lower limit. We find that the most of our radio-detected NLS1s are compact ($<$ 30 kpc), exhibit both flat as well as steep radio spectra, and are distributed across a wide range of 1.4 GHz radio luminosities (10$^{22}$ $-$ 10$^{27}$ W Hz$^{-1}$). At the high end of radio luminosity our NLS1s often tend to show blazar-like properties such as compact radio-size, flat/inverted radio spectrum, radio variability and polarization. The diagnostic plots based on the mid-IR colours suggest that the radio emission in NLS1s is mostly powered by AGN, while nuclear star-formation may have a significant contribution in NLS1s of low radio luminosities. The radio luminosity versus radio-size plot infers that the radio-jets in NLS1s are either in the early evolutionary phase or possibly remain confined within the nuclear region due to low-power or intermittent AGN activity.

قيم البحث

اقرأ أيضاً

Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the H$beta$ broad emission line < 2000 km/s and the flux ratio of [O III] to H$beta$ < 3. Their properties a re not well understood since only a few NLSy1 galaxies were known earlier. We have studied various properties of NLSy1 galaxies using an enlarged sample and compared them with the conventional broad-line Seyfert 1 (BLSy1) galaxies. Both the sample of sources have z $le$ 0.8 and their optical spectra from SDSS-DR12 that are used to derive various physical parameters have a median signal to noise (S/N) ratio >10 per pixel. Strong correlations between the H$beta$ and H$alpha$ emission lines are found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of H$beta$, H$alpha$ and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the $R_{4570}$ - $xi_{Edd}$ diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R > 10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 $pm$ 0.9) than BLSy1 galaxies (2.4 $pm$ 0.8). It is anti-correlated with the H$beta$ width but correlated with the Fe II strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.
We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array (VLA). We find all sources show two-sided, mildly core-domin ated jet structures with diffuse lobes dominated by termination hotspots. These span 20-70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a $45^{circ}$ bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures ($lesssim10^{10}$ K), we conclude these jets are mildly relativistic ($betalesssim0.3$, $deltasim1$-$1.5$) and aligned at moderately small angles to the line of sight (10-15$^{circ}$). The derived kinematic ages of $sim10^6$-$10^7$ y are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from seven to ten and suggest that such extended emission may be common, at least among the brightest of these sources.
81 - K. E. Gabanyi , A. Moor , S. Frey 2018
Most of the radio-loud narrow-line Seyfert 1 (NLS1) galaxies resemble compact steep-spectrum sources. However, the extremely radio-loud ones show blazar-like characteristics, like flat radio spectra, compact radio cores, substantial variability and h igh brightness temperatures. These objects are thought to be similar to blazars as they possess relativistic jets seen at small angle to the line of sight. This claim has been further supported by the Fermi satellite discovery of gamma-ray emission from a handful of these sources. Using the Wide-Field Infrared Survey Explorer (WISE) data, we analyzed the mid-infrared variability characteristics of $42$ radio-loud NLS1 at $3.4$ and $4.6,mu$m. We found that $27$ out of the studied $42$ sources showed variability in at least one of the two infrared bands. In some cases, significant changes in the infrared colors can alter the location of the source in the WISE color-color diagram which might lead to different classification. More than $60$% of the variable sources also showed variability within a $1-1.5$ day interval. Such short time scales argue for a compact emission region like those associated with the jets. This connection is further strengthened by the fact that the brightest $gamma$-ray emitters of the sample ($6$ sources), all showed short time scale infrared variability.
76 - D. J. Whalen 2006
We present results from the analysis of the optical spectra of 47 radio-selected narrow-line Seyfert 1 galaxies (NLS1s). These objects are a subset of the First Bright Quasar Survey (FBQS) and were initially detected at 20 cm (flux density limit ~1 m Jy) in the VLA FIRST Survey. We run Spearman rank correlation tests on several sets of parameters and conclude that, except for their radio properties, radio-selected NLS1 galaxies do not exhibit significant differences from traditional NLS1 galaxies. Our results are also in agreement with previous studies suggesting that NLS1 galaxies have small black hole masses that are accreting very close to the Eddington rate. We have found 16 new radio-loud NLS1 galaxies, which increases the number of known radio-loud NLS1 galaxies by a factor of ~5.
The detection of gamma rays from a small number of Narrow Line Seyfert 1 galaxies by the LAT instrument onboard Fermi seriously challenged our understanding of AGN physics. Among the most important findings associated with their discovery has been th e realisation that smaller-mass black holes seem to be hosted by these systems. Immediately after their discovery a radio multi- frequency monitoring campaign was initiated to understand their jet radio emission. Here the first results of the campaign are presented. The light curves and some first variability analyses are discussed, showing that the brightness temperatures and Doppler factors are moderate. The phenomenologies are typically blazar-like. The frequency domain on the other hand indicates intense spectral evolution and the variability patterns indicate mechanisms similar to those acting in the jets of BL Lacs and FSRQs. Finally, the linear polarisation also reveals the presence of a quiescent, optically thin jet in certain cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا