ﻻ يوجد ملخص باللغة العربية
We propose a vector dark matter model with an exotic dark SU(2) gauge group. Two Higgs triplets are introduced to spontaneously break the symmetry. All of the dark gauge bosons become massive, and the lightest one is a viable vector DM candidate. Its stability is guaranteed by a remaining Z_2 symmetry. We study the parameter space constrained by the Higgs measurement data, the dark matter relic density, and direct and indirect detection experiments. We find numerous parameter points satisfying all the constraints, and they could be further tested in future experiments. Similar methodology can be used to construct vector dark matter models from an arbitrary SO(N) gauge group.
A new vector dark matter (DM) scenario in the context of the gauge-Higgs unification (GHU) is proposed. The DM particle is identified with an electric-charge neutral component in an $SU(2)_L$ doublet vector field with the same quantum number as the S
The proposed LDMX experiment would provide roughly a meter-long region of instrumented tracking and calorimetry that acts as a beam stop for multi-GeV electrons in which each electron is tagged and its evolution measured. This would offer an unpreced
SU(2) gauge theory with a single fermion in the fundamental representation is a minimal non-Abelian candidate for the dark matter sector, which is presently missing from the standard model. Having only a single flavor provides a natural mechanism for
We investigate the phenomenology of an extension of the Standard Model (SM) by a non-abelian gauge group $SU(2)_{HS}$ where all SM particles are singlets under this gauge group, and a new scalar representation $phi$ that is singlet under SM gauge gro
We present models of resonant self-interacting dark matter in a dark sector with QCD, based on analogies to the meson spectra in Standard Model QCD. For dark mesons made of two light quarks, we present a simple model that realizes resonant self-inter