ﻻ يوجد ملخص باللغة العربية
We report a study of a compound solar eruption that was associated with two consecutively erupting magnetic structures and correspondingly two distinct peaks, during impulsive phase, of an M-class flare (M8.5). Simultaneous multi-viewpoint observations from $textit{SDO}$, $textit{GOES}$ and $textit{STEREO-A}$ show that this compound eruption originated from two pre-existing sigmoidal magnetic structures lying along the same polarity inversion line. Observations of the associated pre-existing filaments further show that these magnetic structures are lying one on top of the other, separated by 12 Mm in height, in a so-called double-decker configuration. The high-lying magnetic structure became unstable and erupted first, appearing as an expanding hot channel seen at extreme ultraviolet wavelengths. About 12 minutes later, the low-lying structure also started to erupt and moved at an even faster speed compared to the high-lying one. As a result, the two erupting structures interacted and merged with each other, appearing as a single coronal mass ejection in the outer corona. We find that the double-decker configuration is likely caused by the persistent shearing motion and flux cancellation along the source active regions strong-gradient polarity inversion line. The successive destabilization of these two separate but closely spaced magnetic structures, possibly in the form of magnetic flux ropes, led to a compound solar eruption. The study of the compound eruption provides a unique opportunity to reveal the formation process, initiation, and evolution of complex eruptive structures in solar active regions.
In this Letter, we study the kinematic properties of ascending hot blobs associated with confined flares. Taking advantage of high-cadence extreme-ultraviolet images provided by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory
Solar eruptions are spectacular magnetic explosions in the Suns corona, and how they are initiated remains unclear. Prevailing theories often rely on special magnetic topologies that may not generally exist in the pre-eruption source region of corona
Magnetic reconnection, a change of magnetic field connectivity, is a fundamental physical process in which magnetic energy is released explosively. It is responsible for various eruptive phenomena in the universe. However, this process is difficult t
Double coronal hard X-ray (HXR) sources are believed to be critical observational evidence of bi-directional energy release through magnetic reconnection in a large-scale current sheet in solar ares. Here we present a study on double coronal sources
We investigate the formation times of eruptive magnetic flux ropes relative to the onset of solar eruptions, which is important for constraining models of coronal mass ejection (CME) initiation. We inspected uninterrupted sequences of 131 AA images t