ﻻ يوجد ملخص باللغة العربية
Double coronal hard X-ray (HXR) sources are believed to be critical observational evidence of bi-directional energy release through magnetic reconnection in a large-scale current sheet in solar ares. Here we present a study on double coronal sources observed in both HXR and microwave regimes, revealing new characteristics distinct from earlier reports. This event is associated with a footpoint-occulted X1.3-class flare (25 April 2014, starting at 00:17 UT) and a coronal mass ejection that are likely triggered by the magnetic breakout process, with the lower source extending upward from the top of the partially-occulted flare loops and the upper source co-incident with rapidly squeezing-in side lobes (at a speed of ~250 km/s on both sides). The upper source can be identified at energies as high as 70-100 keV. The X-ray upper source is characterized by flux curves different from the lower source, a weak energy dependence of projected centroid altitude above 20 keV, a shorter duration and a HXR photon spectrum slightly-harder than those of the lower source. In addition, the microwave emission at 34 GHz also exhibits a similar double source structure and the microwave spectra at both sources are in line with gyro-synchrotron emission given by non- thermal energetic electrons. These observations, especially the co-incidence of the very-fast squeezing-in motion of side lobes and the upper source, indicate that the upper source is associated with (possibly caused by) this fast motion of arcades. This sheds new lights on the origin of the corona double-source structure observed in both HXRs and microwaves.
Coronal disturbances associated with solar flares, such as H$alpha$ Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves are discussed herein in relation to magnetohydrodynamics fast-mode waves or shocks in the corona. To understan
Recent observations have revealed that many solar coronal jets involve the eruption of miniatu
Context. Coronal mass ejections (CMEs) on the Sun are the largest explosions in the Solar System that can drive powerful plasma shocks. The eruptions, shocks, and other processes associated to CMEs are efficient particle accelerators and the accelera
This paper reports on the re-analysis of solar flares in which the hard X-rays (HXRs) come predominantly from the corona rather than from the more usual chromospheric footpoints. All of the 26 previously analyzed event time intervals, over 13 flares,
It is generally accepted that solar acoustic (p) modes are excited by near-surface turbulent motions, in particular, by downdrafts and interacting vortices in intergranular lanes. Recent analysis of Solar Dynamics Observatory data by (Zhao et al., 20