ترغب بنشر مسار تعليمي؟ اضغط هنا

Floquet-Induced Superfluidity with Periodically Modulated Interactions of Two-Species Hardcore Bosons in a One-dimensional Optical Lattice

132   0   0.0 ( 0 )
 نشر من قبل Sebastian Eggert
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider two species of hard-core bosons with density dependent hopping in a one-dimensional optical lattice, for which we propose experimental realizations using time-periodic driving. The quantum phase diagram for half-integer filling is determined by combining different advanced numerical simulations with analytic calculations. We find that a reduction of the density-dependent hopping induces a Mott-insulator to superfluid transition. For negative hopping a previously unknown state is found, where one species induces a gauge phase of the other species, which leads to a superfluid phase of gauge-paired particles. The corresponding experimental signatures are discussed.



قيم البحث

اقرأ أيضاً

We study the three-dimensional bosonic t-J model, i.e., the t-J model of bosonic electrons, at finite temperatures. This model describes the $s={1 over 2}$ Heisenberg spin model with the anisotropic exchange coupling $J_{bot}=-alpha J_z$ and doped {i t bosonic} holes, which is an effective system of the Bose-Hubbard model with strong repulsions. The bosonic electron operator $B_{rsigma}$ at the site $r$ with a two-component (pseudo-)spin $sigma (=1,2)$ is treated as a hard-core boson operator, and represented by a composite of two slave particles; a spinon described by a Schwinger boson (CP$^1$ boson) $z_{rsigma}$ and a holon described by a hard-core-boson field $phi_r$ as $B_{rsigma}=phi^dag_r z_{rsigma}$. By means of Monte Carlo simulations, we study its finite-temperature phase structure including the $alpha$ dependence, the possible phenomena like appearance of checkerboard long-range order, super-counterflow, superfluid, and phase separation, etc. The obtained results may be taken as predictions about experiments of two-component cold bosonic atoms in the cubic optical lattice.
330 - Zhihao Xu , William Cole , 2014
We study the effects of spin-orbit coupling on the Mott-superfluid transition of bosons in a one-dimensional optical lattice. We determine the strong coupling magnetic phase diagram by a combination of exact analytic and numerical means. Smooth evolu tion of the magnetic structure into the superfluid phases are investigated with the density matrix renormalization group technique. Novel magnetic phases are uncovered and phase transitions between them within the superfluid regime are discussed. Possible experimental detection are discussed.
We compute the phase diagram of a one-dimensional model of spinless fermions with pair-hopping and nearest-neighbor interaction, first introduced by Ruhman and Altman, using the density-matrix renormalization group combined with various analytical ap proaches. Although the main phases are a Luttinger liquid of fermions and a Luttinger liquid of pairs, we also find remarkable phases in which only a fraction of the fermions are paired. In such case, two situations arise: either fermions and pairs coexist spatially in a two-fluid mixture, or they are spatially segregated leading to phase separation. These results are supported by several analytical models that describe in an accurate way various relevant cuts of the phase diagram. Last, we identify relevant microscopic observables that capture the presence of these two fluids: while originally introduced in a phenomenological way, they support a wider application of two-fluid models for describing pairing phenomena.
The exact solutions of a one-dimensional mixture of spinor bosons and spinor fermions with $delta$-function interactions are studied. Some new sets of Bethe ansatz equations are obtained by using the graded nest quantum inverse scattering method. Man y interesting features appear in the system. For example, the wave function has the $SU(2|2)$ supersymmetry. It is also found that the ground state of the system is partial polarized, where the fermions form a spin singlet state and the bosons are totally polarized. From the solution of Bethe ansatz equations, it is shown that all the momentum, spin and isospin rapidities at the ground state are real if the interactions between the particles are repulsive; while the fermions form two-particle bounded states and the bosons form one large bound state, which means the bosons condensed at the zero momentum point, if the interactions are attractive. The charge, spin and isospin excitations are discussed in detail. The thermodynamic Bethe ansatz equations are also derived and their solutions at some special cases are obtained analytically.
144 - Shaon Sahoo , Imke Schneider , 2019
Driving a quantum system periodically in time can profoundly alter its long-time correlations and give rise to exotic quantum states of matter. The complexity of the combination of many-body correlations and dynamic manipulations has the potential to uncover a whole field of new phenomena, but the theoretical and numerical understanding becomes extremely difficult. We now propose a promising numerical method by generalizing the density matrix renormalization group to a superposition of Fourier components of periodically driven many-body systems using Floquet theory. With this method we can study the full time-dependent quantum solution in a large parameter range for all evolution times, beyond the commonly used high-frequency approximations. Numerical results are presented for the isotropic Heisenberg antiferromagnetic spin-1/2 chain under both local(edge) and global driving for spin-spin correlations and temporal fluctuations. As the frequency is lowered, we demonstrate that more and more Fourier components become relevant and determine strong length- and frequency-dependent changes of the quantum correlations that cannot be described by effective static models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا