ترغب بنشر مسار تعليمي؟ اضغط هنا

Mott-Superfluid Transition for Spin-Orbit Coupled Bosons in One-Dimensional Optical Lattices

227   0   0.0 ( 0 )
 نشر من قبل Zhihao Xu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effects of spin-orbit coupling on the Mott-superfluid transition of bosons in a one-dimensional optical lattice. We determine the strong coupling magnetic phase diagram by a combination of exact analytic and numerical means. Smooth evolution of the magnetic structure into the superfluid phases are investigated with the density matrix renormalization group technique. Novel magnetic phases are uncovered and phase transitions between them within the superfluid regime are discussed. Possible experimental detection are discussed.

قيم البحث

اقرأ أيضاً

We investigate the effect of mass imbalance in binary Fermi mixtures loaded in optical lattices. Using dynamical mean-field theory, we study the transition from a fluid to a Mott insulator driven by the repulsive interactions. For almost every value of the parameters we find that the light species with smaller bare mass is more affected by correlations than the heavy one, so that their effective masses become closer than their bare masses before a Mott transition occurs. The strength of the critical repulsion decreases monotonically as the mass imbalance grows so that the minimum is realized when one of the species is localized. The evolution of the spectral functions testifies that a continuous loss of coherence and a destruction of the Fermi liquid occur as the imbalance grows. The two species display distinct properties and experimentally-observable deviations from the behavior of a balanced Fermi mixture.
108 - H. C. Jiang , Z. Y. Weng , 2007
We study the superfluid-Mott-insulator transition of ultracold bosonic atoms in a one-dimensional optical lattice with a double-well confining trap using the density-matrix renormalization group. At low density, the system behaves similarly as two se parated ones inside harmonic traps. At high density, however, interesting features appear as the consequence of the quantum tunneling between the two wells and the competition between the superfluid and Mott regions. They are characterized by a rich step-plateau structure in the visibility and the satellite peaks in the momentum distribution function as a function of the on-site repulsion. These novel properties shed light on the understanding of the phase coherence between two coupled condensates and the off-diagonal correlations between the two wells.
We investigate the thermal physics of a Bose-Hubbard model with Rashba spin-orbit coupling starting from a strong coupling mean-field ground state. The essential role of the spin-orbit coupling $left(gammaright)$ is to promote condensation of the bos ons at a finite wavevector ${k}_{0}$. We find that the bosons display either homogeneous or phase-twisted or orbital ordered superfluid phases, depending on $gamma$ and the inter-species interaction strength $lambda$. We show that an increase of $gamma$ leads to suppression of the critical interaction $U_c$ for the superfluid to Mott insulator transition in the ground state, and a reduction of the $T_c$ for superfluid to Bose-liquid transition at a fixed interaction. We capture the thermal broadening in the momentum distribution function, and the real space profiles of the thermally disordered magnetic textures, including their homogenization for $T gtrsim T_{c}$. We provide a Landau theory based description of the ground state phase boundaries and thermal transition scales, and discuss experiments which can test our theory.
197 - Yong Xu , Chunlei Qu , Ming Gong 2013
The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, a superconducting state with non-zero total momentum Cooper pairs in a large magnetic field, was first predicted about 50 years ago, and since then became an important concept in many branches of phy sics. Despite intensive search in various materials, unambiguous experimental evidence for the FFLO phase is still lacking in experiments. In this paper, we show that both FF (uniform order parameter with plane-wave phase) and LO phase (spatially varying order parameter amplitude) can be observed using fermionic cold atoms in spin-orbit coupled optical lattices. The increasing spin-orbit coupling enhances the FF phase over the LO phase. The coexistence of superfluid and magnetic orders is also found in the normal BCS phase. The pairing mechanism for different phases is understood by visualizing superfluid pairing densities in different spin-orbit bands. The possibility of observing similar physics using spin-orbit coupled superconducting ultra-thin films is also discussed.
Measurement-based quantum computation, an alternative paradigm for quantum information processing, uses simple measurements on qubits prepared in cluster states, a class of multiparty entangled states with useful properties. Here we propose and analy ze a scheme that takes advantage of the interplay between spin-orbit coupling and superexchange interactions, in the presence of a coherent drive, to deterministically generate macroscopic arrays of cluster states in fermionic alkaline earth atoms trapped in three dimensional (3D) optical lattices. The scheme dynamically generates cluster states without the need of engineered transport, and is robust in the presence of holes, a typical imperfection in cold atom Mott insulators. The protocol is of particular relevance for the new generation of 3D optical lattice clocks with coherence times $>10$ s, two orders of magnitude larger than the cluster state generation time. We propose the use of collective measurements and time-reversal of the Hamiltonian to benchmark the underlying Ising model dynamics and the generated many-body correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا