ﻻ يوجد ملخص باللغة العربية
Super-luminous supernovae (SLSNe) are rare events defined as being significantly more luminous than normal terminal stellar explosions. The source of the extra powering needed to achieve such luminosities is still unclear. Discoveries in the local Universe (i.e. $z<0.1$) are scarce, but afford dense multi-wavelength observations. Additional low-redshift objects are therefore extremely valuable. We present early-time observations of the type I SLSN ASASSN-18km/SN~2018bsz. These data are used to characterise the event and compare to literature SLSNe and spectral models. Host galaxy properties are also analysed. Optical and near-IR photometry and spectroscopy were analysed. Early-time ATLAS photometry was used to constrain the rising light curve. We identified a number of spectral features in optical-wavelength spectra and tracked their time evolution. Finally, we used archival host galaxy photometry together with HII region spectra to constrain the host environment. ASASSN-18km/SN~2018bsz is found to be a type I SLSN in a galaxy at a redshift of 0.0267 (111 Mpc), making it the lowest-redshift event discovered to date. Strong CII lines are identified in the spectra. Spectral models produced by exploding a Wolf-Rayet progenitor and injecting a magnetar power source are shown to be qualitatively similar to ASASSN-18km/SN~2018bsz, contrary to most SLSNe-I that display weak/non-existent CII lines. ASASSN-18km/SN~2018bsz displays a long, slowly rising, red plateau of $>$26 days, before a steeper, faster rise to maximum. The host has an absolute magnitude of --19.8 mag ($r$), a mass of M$_{*}$ = 1.5$^{+0.08}_{-0.33}$ $times$10$^{9}$ M$_{odot}$ , and a star formation rate of = 0.50$^{+2.22}_{-0.19}$ M$_{odot}$ yr$^{-1}$. A nearby HII region has an oxygen abundance (O3N2) of 8.31$pm$0.01 dex.
We present optical photometry and spectroscopy from about a week after explosion to $sim$272 d of an atypical Type IIP supernova, SN 2015ba, which exploded in the edge-on galaxy IC 1029. SN 2015ba is a luminous event with an absolute V-band magnitude
Context: Type Ibn supernovae are a rare class of stripped envelope supernovae interacting with a helium-rich CSM. The majority of the SNe Ibn reported display a surprising homogeneity in their fast lightcurves and starforming hosts. Aims: We present
We investigate the thermal emission and extinction from dust associated with the nearby superluminous supernova (SLSN) 2018bsz. Our dataset has daily cadence and simultaneous optical and near-infrared coverage up to ~ 100 days, together with late tim
SN 2018hti is a Type I superluminous supernova (SLSN~I) with an absolute $g$-band magnitude of $-22.2$ at maximum brightness, discovered in a metal-poor galaxy at a redshift of 0.0612. We present extensive photometric and spectroscopic observations o
The discovery of a population of superluminous supernovae (SLSNe), with peak luminosities a factor of ~100 brighter than normal SNe (typically SLSNe have M_V <-21), has shown an unexpected diversity in core-collapse supernova properties. Numerous mod