ترغب بنشر مسار تعليمي؟ اضغط هنا

Superluminous X-rays from a superluminous supernova

89   0   0.0 ( 0 )
 نشر من قبل Andrew Levan
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.J. Levan




اسأل ChatGPT حول البحث

The discovery of a population of superluminous supernovae (SLSNe), with peak luminosities a factor of ~100 brighter than normal SNe (typically SLSNe have M_V <-21), has shown an unexpected diversity in core-collapse supernova properties. Numerous models have been postulated for the nature of these events, including a strong interaction of the shockwave with a dense circumstellar environment, a re-energizing of the outflow via a central engine, or an origin in the catastrophic destruction of the star following a loss of pressure due to pair production in an extremely massive stellar core (so-called pair instability supernovae). Here we consider constraints that can be placed on the explosion mechanism of Hydrogen-poor SLSNe (SLSNe-I) via X-ray observations, with XMM-Newton, Chandra and Swift, and show that at least one SLSNe-I is likely the brightest X-ray supernovae ever observed, with L_X ~ 10^45 ergs/s, ~150 days after its initial discovery. This is a luminosity 3 orders of magnitude higher than seen in other X-ray supernovae powered via circumstellar interactions. Such high X-ray luminosities are sufficient to ionize the ejecta and markedly reduce the optical depth, making it possible to see deep into the ejecta and any source of emission that resides there. Alternatively, an engine could have powered a moderately relativistic jet external to the ejecta, similar to those seen in gamma-ray bursts. If the detection of X-rays does require an engine it implies that these SNe do create compact objects, and that the stars are not completely destroyed in a pair instability event. Future observations will determine which, if any, of these mechanisms are at play in superluminous supernovae.

قيم البحث

اقرأ أيضاً

111 - A. Papadopoulos 2015
We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline t he spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 +/- 0.001 based on the host-galaxy emission lines) and likely spectral type (type I). Using this redshift, we find M_U_peak = -21.05 +0.10 -0.09 for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low metallicity (sub-solar), low stellar-mass host galaxy (log(M/M_sun) = 9.3 +/- 0.3); consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to fourteen similarly well-observed SLSNe-I in the literature and find it possesses one of the slowest declining tails (beyond +30 days rest frame past peak), and is the faintest at peak. Moreover, we find the bolometric light curves of all SLSNe-I studied herein possess a dispersion of only 0.2-0.3 magnitudes between +25 and +30 days after peak (rest frame) depending on redshift range studied; this could be important for standardising such supernovae, as is done with the more common type Ia. We fit the bolometric light curve of DES13S2cmm with two competing models for SLSNe-I - the radioactive decay of 56Ni, and a magnetar - and find that while the magnetar is formally a better fit, neither model provides a compelling match to the data. Although we are unable to conclusively differentiate between these two physical models for this particular SLSN-I, further DES observations of more SLSNe-I should break this degeneracy, especially if the light curves of SLSNe-I can be observed beyond 100 days in the rest frame of the supernova.
Hydrogen-poor superluminous supernovae (SLSN-I) are a class of rare and energetic explosions discovered in untargeted transient surveys in the past decade. The progenitor stars and the physical mechanism behind their large radiated energies ($sim10^{ 51}$ erg) are both debated, with one class of models primarily requiring a large rotational energy, while the other requires very massive progenitors to either convert kinetic energy into radiation via interaction with circumstellar material (CSM), or engender a pair-instability explosion. Observing the structure of the CSM around SLSN-I offers a powerful test of some scenarios, though direct observations are scarce. Here, we present a series of spectroscopic observations of the SLSN-I iPTF16eh, which reveal both absorption and time- and frequency-variable emission in the Mg II resonance doublet. We show that these observations are naturally explained as a resonance scattering light echo from a circumstellar shell. Modeling the evolution of the emission, we find a shell radius of 0.1 pc and velocity of 3300 km s$^{-1}$, implying the shell was ejected three decades prior to the supernova explosion. These properties match theoretical predictions of pulsational pair-instability shell ejections, and imply the progenitor had a He core mass of $sim 50-55~{rm M}_{odot}$, corresponding to an initial mass of $sim 115~{rm M}_{odot}$.
We investigate the thermal emission and extinction from dust associated with the nearby superluminous supernova (SLSN) 2018bsz. Our dataset has daily cadence and simultaneous optical and near-infrared coverage up to ~ 100 days, together with late tim e (+ 1.7 yr) MIR observations. At 230 days after light curve peak the SN is not detected in the optical, but shows a surprisingly strong near-infrared excess, with r - J > 3 mag and r - Ks > 5 mag. The time evolution of the infrared light curve enables us to investigate if the mid-infrared emission is from newly formed dust inside the SN ejecta, from a pre-existing circumstellar envelope, or interstellar material heated by the radiation from the SN. We find the latter two scenarios can be ruled out, and a scenario where new dust is forming in the SN ejecta at epochs > 200 days can self-consistently reproduce the evolution of the SN flux. We can fit the spectral energy distribution well at +230 d with 5 x 10^-4 solar mass of carbon dust, increasing over the following several hundred days to 10^-2 solar mass by +535 d. SN 2018bsz is the first SLSN showing evidence for dust formation within the SN ejecta, and appears to form ten times more dust than normal core-collapse SNe at similar epochs. Together with their preference for low mass, low metallicity host galaxies, we suggest that SLSNe may be a significant contributor to dust formation in the early Universe.
The recent discovery of the unprecedentedly superluminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for superluminous supernovae. Here we examine some of the fe w viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the lightcurve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observed spectra. We find that, as a supernova ASASSN-15lh can be best modeled by the energetic core-collapse of a ~40 Msun star interacting with a hydrogen-poor shell of ~20 Msun. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with initial period of 1-2 ms and magnetic field of 0.1-1 x 10^14 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. We thus favor a single-input model where the reverse shock formed in a strong SN ejecta-CSM interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.
We present optical imaging and spectroscopy of SN,2018lfe, which we classify as a Type I superluminous supernova (SLSN-I) at a redshift of $z = 0.3501$ with a peak absolute magnitude of $M_rapprox -22.1$ mag, one of the brightest SLSNe discovered. SN ,2018lfe was identified for follow-up using our FLEET machine learning pipeline. Both the light curve and the spectra of SN,2018lfe are consistent with the broad population of SLSNe. We fit the light curve with a magnetar central engine model and find an ejecta mass of $M_{rm ej}approx 3.8$ M$_odot$, a magnetar spin period of $Papprox 2.9$ ms and a magnetic field strength of $B_{perp}approx 2.8times 10^{14}$ G. The magnetic field strength is near the top of the distribution for SLSNe, while the spin period and ejecta mass are near the median values of the distribution for SLSNe. From late-time imaging and spectroscopy we find that the host galaxy of SN,2018lfe has an absolute magnitude of $M_rapprox -17.85$, ($L_B approx 0.029$ $L^*$), and an inferred metallicity of $Zapprox 0.3$ Z$_odot$, and star formation rate of $approx 0.8$ M$_odot$ yr$^{-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا