ترغب بنشر مسار تعليمي؟ اضغط هنا

Poor-mans model of hollow-core anti-resonant fibers

100   0   0.0 ( 0 )
 نشر من قبل Morten Bache
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate various methods for extending the simple analytical capillary model to describe the dispersion and loss of anti-resonant hollow-core fibers without the need of detailed finite-element simulations across the desired wavelength range. This poor-mans model can with a single fitting parameter quite accurately mimic dispersion and loss resonances and anti-resonances from full finite-element simulations. Due to the analytical basis of the model it is easy to explore variations in core size and cladding wall thickness, and should therefore provide a valuable tool for numerical simulations of the ultrafast nonlinear dynamics of gas-filled hollow-core fibers.

قيم البحث

اقرأ أيضاً

Understanding the impact of the cladding tube structure on the overall guiding performance is crucial for designing single-mode, wide-band, and ultra low-loss nested hollow-core anti-resonant fiber (HC-ARF). Here we thoroughly investigate on how the propagation loss is affected by the nested elements when their geometry is realistic (i.e., non-ideal). Interestingly, it was found that the size rather than the shape of the nested elements, have a dominant role in the final loss performance of the HC-ARFs. We identify a unique V-shape pattern for suppression of higher-order modes loss by optimizing free design parameters of HC-ARF. We find that a 5-tube nested HC-ARF has wider transmission window and better single-mode operation than 6-tube HC-ARF. We show that the propagation loss can be significantly improved by using anisotropic nested anti-resonant tubes elongated in the radial direction. Our simulations indicate that with this novel fiber design, a propagation loss as low as 0.11 dB/km at 1.55 $mu$m can be achieved. Our results provide design insights towards fully exploiting single-mode, wide-band, and ultra low-loss HC-ARF. In addition, the extraordinary optical properties of the proposed fiber can be beneficial for several applications such as future optical communication system, high energy light transport, extreme non-nonlinear optics and beyond.
In this work, we numerically investigate an experimentally feasible design of a tapered Ne-filled hollow-core anti-resonant fiber and we report the generation of multiple dispersive waves (DWs) in the range 90-120 nm, well into the extreme ultraviole t (UV) region. The simulations assume an 800 nm pump pulse with 30 fs 10 $mu$J pulse energy, launched into a 9 bar Ne-filled fiber with $34~mu$m initial core diameter that is then tapered to a $10~mu$m core diameter. The simulations were performed using a new model that provides a realistic description of both loss and dispersion of the resonant and anti-resonant spectral bands of the fiber, and also importantly includes the material loss of silica in the UV. We show that by first generating solitons that emit DWs in the far-UV region in the pre-taper section, optimization of the following taper structure can allow re-collision with the solitons and further up-conversion of the far-UV DWs to the extreme-UV with energies up to 190 nJ in the 90-120 nm range. This process provides a new way to generate light in the extreme-UV spectral range using relatively low gas pressure.
Gas-filled hollow-core photonic crystal fiber (PCF) is used for efficient nonlinear temporal compression of femtosecond laser pulses, two main schemes being direct soliton-effect self-compression, and spectral broadening followed by phase compensatio n. To obtain stable compressed pulses, it is crucial to avoid decoherence through modulational instability (MI) during spectral broadening. Here we show that changes in dispersion due to spectral anti-crossings between the fundamental core mode and core wall resonances in anti-resonant-guiding hollow-core PCF can strongly alter the MI gain spectrum, enabling MI-free pulse compression for optimized fiber designs. In addition, higher-order dispersion can introduce MI even when the pump pulses lie in the normal dispersion region.
We demonstrate a route to supercontinuum generation in gas-filled hollow-core anti-resonant fibers through the creation of a broad vibrational Raman frequency comb followed by continuous broadening and merging of the comb lines through either rotatio nal Raman scattering or the optical Kerr effect. Our demonstration experiments, utilizing a single pump pulse with 20 ps duration at 532 nm in a nitrogen-filled fiber, produce a supercontinuum spanning from 440 nm to 1200 nm, with an additional deep ultraviolet continuum from 250 nm to 360 nm. Numerical results suggest that this approach can produce even broader supercontinuum spectra extending from the ultraviolet to mid-infrared.
By performing quantum-noise-limited optical heterodyne detection, we observe polarization noise in light after propagation through a hollow-core photonic crystal fiber (PCF). We compare the noise spectrum to the one of a standard fiber and find an in crease of noise even though the light is mainly transmitted in air in a hollow-core PCF. Combined with our simulation of the acoustic vibrational modes in the hollow-core PCF, we are offering an explanation for the polarization noise with a variation of guided acoustic wave Brillouin scattering (GAWBS). Here, instead of modulating the strain in the fiber core as in a solid core fiber, the acoustic vibrations in hollow-core PCF influence the effective refractive index by modulating the geometry of the photonic crystal structure. This induces polarization noise in the light guided by the photonic crystal structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا