ترغب بنشر مسار تعليمي؟ اضغط هنا

Low Magnetic Field Regime of a Gate-Defined Constriction in High-Mobility Graphene

52   0   0.0 ( 0 )
 نشر من قبل Louis Veyrat
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the evolution of the coherent electronic transport through a gate-defined constriction in a high-mobility graphene device from ballistic transport to quantum Hall regime upon increasing the magnetic field. At low field, the conductance exhibits Fabry-Perot resonances resulting from the npn cavities formed beneath the top-gated regions. Above a critical field $B^*$ corresponding to the cyclotron radius equal to the npn cavity length, Fabry-Perot resonances vanish and snake trajectories are guided through the constriction with a characteristic set of conductance oscillations. Increasing further the magnetic field allows us to probe the Landau level spectrum in the constriction, with distortions due to the combination of confinement and de-confinement of Landau levels in a saddle potential. These observations are confirmed by numerical calculations.

قيم البحث

اقرأ أيضاً

75 - Carolin Gold 2020
We use Scanning Gate Microscopy to demonstrate the presence of localized states arising from potential inhomogeneities in a 50nm-wide, gate-defined conducting channel in encapsulated bilayer graphene. When imaging the channel conductance under the in fluence of a local tip-induced potential, we observe ellipses of enhanced conductance as a function of the tip position. These ellipses allow us to infer the location of the localized states and to study their dependence on the displacement field. For large displacement fields, we observe that localized states tend to occur halfway into the channel. All our observations can be well explained within the framework of stochastic Coulomb blockade.
Graphene has evolved as a platform for quantum transport that can compete with the best and cleanest semiconductor systems. Recently, many interesting local properties of carrier transport in graphene have been investigated by various scanning probe techniques. Here, we report on the observation of distinct electronic jets emanating from a narrow split-gate defined channel in bilayer graphene. We find that these jets, which are visible via their interference patterns, occur predominantly with an angle of 60{deg} between each other. This observation is related to the specific bandstructure of bilayer graphene, in particular trigonal warping, which leads to a valley-dependent selection of momenta for low-energy conduction channels. This experimental observation of electron jetting has consequences for carrier transport in graphene in general as well as for devices relying on ballistic and valley selective transport.
We report on charge detection in electrostatically-defined quantum dot devices in bilayer graphene using an integrated charge detector. The device is fabricated without any etching and features a graphite back gate, leading to high quality quantum do ts. The charge detector is based on a second quantum dot separated from the first dot by depletion underneath a 150 nm wide gate. We show that Coulomb resonances in the sensing dot are sensitive to individual charging events on the nearby quantum dot. The potential change due to single electron charging causes a step-like change (up to 77 %) in the current through the charge detector. Furthermore, the charging states of a quantum dot with tunable tunneling barriers and of coupled quantum dots can be detected.
We theoretically analyse the possibility to electrostatically confine electrons in circular quantum dot arrays, impressed on contacted graphene nanoribbons by top gates. Utilising exact numerical techniques, we compute the scattering efficiency of a single dot and demonstrate that for small-sized scatterers the cross-sections are dominated by quantum effects, where resonant scattering leads to a series of quasi-bound dot states. Calculating the conductance and the local density of states for quantum dot superlattices we show that the resonant carrier transport through such graphene-based nanostructures can be easily tuned by varying the gate voltage.
In the past two years, magic-angle twisted bilayer graphene has emerged as a uniquely versatile experimental platform that combines metallic, superconducting, magnetic and insulating phases in a single crystal. In particular the ability to tune the s uperconducting state with a gate voltage opened up intriguing prospects for novel device functionality. Here we present the first demonstration of a device based on the interplay between two distinct phases in adjustable regions of a single magic-angle twisted bilayer graphene crystal. We electrostatically define the superconducting and insulating regions of a Josephson junction and observe tunable DC and AC Josephson effects. We show that superconductivity is induced in different electronic bands and describe the junction behaviour in terms of these bands, taking in consideration interface effects as well. Shapiro steps, a hallmark of the AC Josephson effect and therefore the formation of a Josephson junction, are observed. This work is an initial step towards devices where separate gate-defined correlated states are connected in single-crystal nanostructures. We envision applications in superconducting electronics and quantum information technology as well as in studies exploring the nature of the superconducting state in magic-angle twisted bilayer graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا