ﻻ يوجد ملخص باللغة العربية
Graphene has evolved as a platform for quantum transport that can compete with the best and cleanest semiconductor systems. Recently, many interesting local properties of carrier transport in graphene have been investigated by various scanning probe techniques. Here, we report on the observation of distinct electronic jets emanating from a narrow split-gate defined channel in bilayer graphene. We find that these jets, which are visible via their interference patterns, occur predominantly with an angle of 60{deg} between each other. This observation is related to the specific bandstructure of bilayer graphene, in particular trigonal warping, which leads to a valley-dependent selection of momenta for low-energy conduction channels. This experimental observation of electron jetting has consequences for carrier transport in graphene in general as well as for devices relying on ballistic and valley selective transport.
We use Scanning Gate Microscopy to demonstrate the presence of localized states arising from potential inhomogeneities in a 50nm-wide, gate-defined conducting channel in encapsulated bilayer graphene. When imaging the channel conductance under the in
We report on charge detection in electrostatically-defined quantum dot devices in bilayer graphene using an integrated charge detector. The device is fabricated without any etching and features a graphite back gate, leading to high quality quantum do
In the past two years, magic-angle twisted bilayer graphene has emerged as a uniquely versatile experimental platform that combines metallic, superconducting, magnetic and insulating phases in a single crystal. In particular the ability to tune the s
The rich and electrostatically tunable phase diagram exhibited by moire materials has made them a suitable platform for hosting single material multi-purpose devices. To engineer such devices, understanding electronic transport and localization acros
We theoretically analyse the possibility to electrostatically confine electrons in circular quantum dot arrays, impressed on contacted graphene nanoribbons by top gates. Utilising exact numerical techniques, we compute the scattering efficiency of a