ﻻ يوجد ملخص باللغة العربية
In this paper, we present an embedding-based framework (TrQuery) for recommending solutions of a SPARQL query, including approximate solutions when exact querying solutions are not available due to incompleteness or inconsistencies of real-world RDF data. Within this framework, embedding is applied to score solutions together with edit distance so that we could obtain more fine-grained recommendations than those recommendations via edit distance. For instance, graphs of two querying solutions with a similar structure can be distinguished in our proposed framework while the edit distance depending on structural difference becomes unable. To this end, we propose a novel score model built on vector space generated in embedding system to compute the similarity between an approximate subgraph matching and a whole graph matching. Finally, we evaluate our approach on large RDF datasets DBpedia and YAGO, and experimental results show that TrQuery exhibits an excellent behavior in terms of both effectiveness and efficiency.
In this paper, we present a MapReduce-based framework for evaluating SPARQL queries on GPU (named MapSQ) to large-scale RDF datesets efficiently by applying both high performance. Firstly, we develop a MapReduce-based Join algorithm to handle SPARQL
In the real world datasets (e.g.,DBpedia query log), queries built on well-designed patterns containing only AND and OPT operators (for short, WDAO-patterns) account for a large proportion among all SPARQL queries. In this paper, we present a plugin-
Query response time often influences user experience in the real world. However, it possibly takes more time to answer a query with its all exact solutions, especially when it contains the OPT operations since the OPT operation is the least conventio
Finding a good query plan is key to the optimization of query runtime. This holds in particular for cost-based federation engines, which make use of cardinality estimations to achieve this goal. A number of studies compare SPARQL federation engines a
Based on Semantic Web technologies, knowledge graphs help users to discover information of interest by using live SPARQL services. Answer-seekers often examine intermediate results iteratively and modify SPARQL queries repeatedly in a search session.