ﻻ يوجد ملخص باللغة العربية
We extend the general relativistic Lagrangian perturbation theory, recently developed for the formation of cosmic structures in a dust continuum, to the case of model universes containing a single fluid with a single-valued analytic equation of state. Using a coframe-based perturbation approach, we investigate evolution equations for structure formation in pressure-supported irrotational fluids that generate their rest-frame spacetime foliation. We provide master equations to first order for the evolution of the trace and traceless parts of barotropic perturbations that evolve in the perturbed space, where the latter describes the propagation of gravitational waves in the fluid. We illustrate the trace evolution for a linear equation of state and for a model equation of state describing isotropic velocity dispersion, and we discuss differences to the dust matter model, to the Newtonian case, and to standard perturbation approaches.
We examine the relation between the Szekeres models and relativistic Lagrangian perturbation schemes, in particular the Relativistic Zeldovich Approximation (RZA). We show that the second class of the Szekeres solutions is exactly contained within th
In this first paper we present a Lagrangian framework for the description of structure formation in general relativity, restricting attention to irrotational dust matter. As an application we present a self-contained derivation of a general-relativis
We investigate the structure formation in the effective field theory of the holographic dark energy. The equation of motion for the energy contrast $delta_m$ of the cold dark matter is the same as the one in the general relativity up to the leading o
We compute cosmological perturbations for a generic self-gravitating media described by four derivatively- coupled scalar fields. Depending on the internal symmetries of the action for the scalar fields, one can describe perfect fluids, superfluids,
We introduce a generalization of the 4-dimensional averaging window function of Gasperini, Marozzi and Veneziano (2010) that may prove useful for a number of applications. The covariant nature of spatial scalar averaging schemes to address the averag