ﻻ يوجد ملخص باللغة العربية
In this first paper we present a Lagrangian framework for the description of structure formation in general relativity, restricting attention to irrotational dust matter. As an application we present a self-contained derivation of a general-relativistic analogue of Zeldovichs approximation for the description of structure formation in cosmology, and compare it with previous suggestions in the literature. This approximation is then investigated: paraphrasing the derivation in the Newtonian framework we provide general-relativistic analogues of the basic system of equations for a single dynamical field variable and recall the first-order perturbation solution of these equations. We then define a general-relativistic analogue of Zeldovichs approximation and investigate its implications by functionally evaluating relevant variables, and we address the singularity problem. We so obtain a possibly powerful model that, although constructed through extrapolation of a perturbative solution, can be used to put into practice nonperturbatively, e.g. problems of structure formation, backreaction problems, nonlinear properties of gravitational radiation, and light-propagation in realistic inhomogeneous universe models. With this model we also provide the key-building blocks for initializing a fully relativistic numerical simulation.
We extend the general relativistic Lagrangian perturbation theory, recently developed for the formation of cosmic structures in a dust continuum, to the case of model universes containing a single fluid with a single-valued analytic equation of state
We examine the relation between the Szekeres models and relativistic Lagrangian perturbation schemes, in particular the Relativistic Zeldovich Approximation (RZA). We show that the second class of the Szekeres solutions is exactly contained within th
The purpose of this paper is to establish a Lagrangian potential theory, analogous to the classical pluripotential theory, and to define and study a Lagrangian differential operator of Monge-Ampere type. This development is new even in ${bf C}^n$. Ho
We show that the matter Lagrangian of an ideal fluid equals (up to a sign -depending on its definition and on the chosen signature of the metric) the total energy density of the fluid, i.e. rest energy density plus internal energy density.
New statistical properties of dark matter halos in Lagrangian space are presented. Tracing back the dark matter particles constituting bound halos resolved in a series of N-body simulations, we measure quantitatively the correlations of the proto-hal