ترغب بنشر مسار تعليمي؟ اضغط هنا

Oscillons in $phi^6$-theories: Possible occurrence in MHD

84   0   0.0 ( 0 )
 نشر من قبل Rafael Augusto Couceiro Correa
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we report on the possibility of occurrence of oscillon configurations in the fourth state of matter. Oscillons are extremely long-lived, time-periodic, spatially-localised scalar field structures. Starting from a scalar field theory in 1+1 space-time dimensions, we find out that small-amplitude oscillons can be obtained in the framework of a $phi^6$ self-interacting potential. A connection between our results and ideal MHD theory is established. Perspectives for a development of the present work are pointed out.

قيم البحث

اقرأ أيضاً

We investigate possible renormalization-group fixed points at nonzero coupling in $phi^3$ theories in six spacetime dimensions, using beta functions calculated to the four-loop level. We analyze three theories of this type, with (a) a one-component s calar, (b) a scalar transforming as the fundamental representation of a global ${rm SU}(N)$ symmetry group, and (c) a scalar transforming as a bi-adjoint representation of a global ${rm SU}(N) otimes {rm SU}(N)$ symmetry. We do not find robust evidence for such fixed points in theories (a) or (b). Theory (c) has the special feature that the one-loop term in the beta function is zero; implications of this are discussed.
Recent studies have emphasized the important role that a shape deformability of scalar-field models pertaining to the same class with the standard $phi^4$ field, can play in controlling the production of a specific type of breathing bound states so-c alled oscillons. In the context of cosmology, the built-in mechanism of oscillons suggests that they can affect the standard picture of scalar ultra-light dark matter. In the present work kink scatterings are investigated in a parametrized model of bistable system admitting the classical $phi^4$ field as an asymptotic limit, with focus on the formation of long-lived low-amplitude almost harmonic oscillations of the scalar field around a vacuum. The parametrized model is characterized by a double-well potential with a shape-deformation parameter that changes only the steepness of the potential walls, and hence the flatness of the hump of the potential barrier, leaving unaffected the two degenerate minima and the barrier height. It is found that the variation of the deformability parameter promotes several additional vibrational modes in the kink-phonon scattering potential, leading to suppression of the two-bounce windows in kink-antikink scatterings and the production of oscillons. Numerical results suggest that the anharmonicity of the potential barrier, characterized by a flat barrier hump, is the main determinant factor for the production of oscillons in double-well systems.
We present a trace formula for a Witten type Index for superconformal field theories in d=3,5 and 6 dimensions, generalizing a similar recent construction in d=4. We perform a detailed study of the decomposition of long representations into sums of s hort representations at the unitarity bound to demonstrate that our trace formula yields the most general index (i.e. quantity that is guaranteed to be protected by superconformal symmetry alone) for the corresponding superalgebras. Using the dual gravitational description, we compute our index for the theory on the world volume of N M2 and M5 branes in the large N limit. We also compute our index for recently constructed Chern Simons theories in three dimensions in the large N limit, and find that, in certain cases, this index undergoes a large N phase transition as a function of chemical potentials.
148 - H. Arodz , Z. Swierczynski 2011
We present a new class of oscillons in the (1+1)-dimensional signum-Gordon model. The oscillons periodically move to and fro in the space. They have finite total energy, finite size, and are strictly periodic in time. The corresponding solutions of t he scalar field equation are explicitly constructed from the second order polynomials in the time and position coordinates.
156 - E. Farhi , N. Graham , A. H. Guth 2008
We consider a (1+1) dimensional scalar field theory that supports oscillons, which are localized, oscillatory, stable solutions to nonlinear equations of motion. We study this theory in an expanding background and show that oscillons now lose energy, but at a rate that is exponentially small when the expansion rate is slow. We also show numerically that a universe that starts with (almost) thermal initial conditions will cool to a final state where a significant fraction of the energy of the universe -- on the order of 50% -- is stored in oscillons. If this phenomenon persists in realistic models, oscillons may have cosmological consequences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا