ﻻ يوجد ملخص باللغة العربية
We present a trace formula for a Witten type Index for superconformal field theories in d=3,5 and 6 dimensions, generalizing a similar recent construction in d=4. We perform a detailed study of the decomposition of long representations into sums of short representations at the unitarity bound to demonstrate that our trace formula yields the most general index (i.e. quantity that is guaranteed to be protected by superconformal symmetry alone) for the corresponding superalgebras. Using the dual gravitational description, we compute our index for the theory on the world volume of N M2 and M5 branes in the large N limit. We also compute our index for recently constructed Chern Simons theories in three dimensions in the large N limit, and find that, in certain cases, this index undergoes a large N phase transition as a function of chemical potentials.
Aharony, Bergman, Jafferis and Maldacena have recently proposed a dual gravitational description for a family of superconformal Chern Simons theories in three spacetime dimensions. In this note we perform the one loop computation that determines the
Superconformal indices (SCIs) of 4d ${mathcal N}=4$ SYM theories with simple gauge groups are described in terms of elliptic hypergeometric integrals. For $F_4, E_6, E_7, E_8$ gauge groups this yields first examples of integrals of such type. S-duali
Following a recent work of Dolan and Osborn, we consider superconformal indices of four dimensional ${mathcal N}=1$ supersymmetric field theories related by an electric-magnetic duality with the SP(2N) gauge group and fixed rank flavour groups. For t
We present a general method for computing the central charges a and c of N=2 superconformal field theories corresponding to singular points in the moduli space of N=2 gauge theories. Our method relates a and c to the U(1)_R anomalies of the topologic
We propose a graph-theoretic description to determine and characterize 5d superconformal field theories (SCFTs) that arise as circle reductions of 6d $mathcal{N} = (1,0)$ SCFTs. Each 5d SCFT is captured by a graph, called a Combined Fiber Diagram (CF