ﻻ يوجد ملخص باللغة العربية
This paper presents a fully automated atlas-based pancreas segmentation method from CT volumes utilizing 3D fully convolutional network (FCN) feature-based pancreas localization. Segmentation of the pancreas is difficult because it has larger inter-patient spatial variations than other organs. Previous pancreas segmentation methods failed to deal with such variations. We propose a fully automated pancreas segmentation method that contains novel localization and segmentation. Since the pancreas neighbors many other organs, its position and size are strongly related to the positions of the surrounding organs. We estimate the position and the size of the pancreas (localized) from global features by regression forests. As global features, we use intensity differences and 3D FCN deep learned features, which include automatically extracted essential features for segmentation. We chose 3D FCN features from a trained 3D U-Net, which is trained to perform multi-organ segmentation. The global features include both the pancreas and surrounding organ information. After localization, a patient-specific probabilistic atlas-based pancreas segmentation is performed. In evaluation results with 146 CT volumes, we achieved 60.6% of the Jaccard index and 73.9% of the Dice overlap.
Fast and accurate catheter detection in cardiac catheterization using harmless 3D ultrasound (US) can improve the efficiency and outcome of the intervention. However, the low image quality of US requires extra training for sonographers to localize th
Segmentation of pancreas is important for medical image analysis, yet it faces great challenges of class imbalance, background distractions and non-rigid geometrical features. To address these difficulties, we introduce a Deep Q Network(DQN) driven a
Semantic segmentation with deep learning has achieved great progress in classifying the pixels in the image. However, the local location information is usually ignored in the high-level feature extraction by the deep learning, which is important for
Recently 3D volumetric organ segmentation attracts much research interest in medical image analysis due to its significance in computer aided diagnosis. This paper aims to address the pancreas segmentation task in 3D computed tomography volumes. We p
We consider the problem of accurately identifying cell boundaries and labeling individual cells in confocal microscopy images, specifically, 3D image stacks of cells with tagged cell membranes. Precise identification of cell boundaries, their shapes,