ترغب بنشر مسار تعليمي؟ اضغط هنا

Accurate 3D Cell Segmentation using Deep Feature and CRF Refinement

74   0   0.0 ( 0 )
 نشر من قبل Jiaxiang(Tom) Jiang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of accurately identifying cell boundaries and labeling individual cells in confocal microscopy images, specifically, 3D image stacks of cells with tagged cell membranes. Precise identification of cell boundaries, their shapes, and quantifying inter-cellular space leads to a better understanding of cell morphogenesis. Towards this, we outline a cell segmentation method that uses a deep neural network architecture to extract a confidence map of cell boundaries, followed by a 3D watershed algorithm and a final refinement using a conditional random field. In addition to improving the accuracy of segmentation compared to other state-of-the-art methods, the proposed approach also generalizes well to different datasets without the need to retrain the network for each dataset. Detailed experimental results are provided, and the source code is available on GitHub.



قيم البحث

اقرأ أيضاً

In this paper, we introduce a novel network, called discriminative feature network (DFNet), to address the unsupervised video object segmentation task. To capture the inherent correlation among video frames, we learn discriminative features (D-featur es) from the input images that reveal feature distribution from a global perspective. The D-features are then used to establish correspondence with all features of test image under conditional random field (CRF) formulation, which is leveraged to enforce consistency between pixels. The experiments verify that DFNet outperforms state-of-the-art methods by a large margin with a mean IoU score of 83.4% and ranks first on the DAVIS-2016 leaderboard while using much fewer parameters and achieving much more efficient performance in the inference phase. We further evaluate DFNet on the FBMS dataset and the video saliency dataset ViSal, reaching a new state-of-the-art. To further demonstrate the generalizability of our framework, DFNet is also applied to the image object co-segmentation task. We perform experiments on a challenging dataset PASCAL-VOC and observe the superiority of DFNet. The thorough experiments verify that DFNet is able to capture and mine the underlying relations of images and discover the common foreground objects.
Deep learning techniques have successfully been employed in numerous computer vision tasks including image segmentation. The techniques have also been applied to medical image segmentation, one of the most critical tasks in computer-aided diagnosis. Compared with natural images, the medical image is a gray-scale image with low-contrast (even with some invisible parts). Because some organs have similar intensity and texture with neighboring organs, there is usually a need to refine automatic segmentation results. In this paper, we propose an interactive deep refinement framework to improve the traditional semantic segmentation networks such as U-Net and fully convolutional network. In the proposed framework, we added a refinement network to traditional segmentation network to refine the segmentation results.Experimental results with public dataset revealed that the proposed method could achieve higher accuracy than other state-of-the-art methods.
With the growing demand for hand hygiene and convenience of use, palmprint recognition with touchless manner made a great development recently, providing an effective solution for person identification. Despite many efforts that have been devoted to this area, it is still uncertain about the discriminative ability of the contactless palmprint, especially for large-scale datasets. To tackle the problem, in this paper, we build a large-scale touchless palmprint dataset containing 2334 palms from 1167 individuals. To our best knowledge, it is the largest contactless palmprint image benchmark ever collected with regard to the number of individuals and palms. Besides, we propose a novel deep learning framework for touchless palmprint recognition named 3DCPN (3D Convolution Palmprint recognition Network) which leverages 3D convolution to dynamically integrate multiple Gabor features. In 3DCPN, a novel variant of Gabor filter is embedded into the first layer for enhancement of curve feature extraction. With a well-designed ensemble scheme,low-level 3D features are then convolved to extract high-level features. Finally on the top, we set a region-based loss function to strengthen the discriminative ability of both global and local descriptors. To demonstrate the superiority of our method, extensive experiments are conducted on our dataset and other popular databases TongJi and IITD, where the results show the proposed 3DCPN achieves state-of-the-art or comparable performances.
Object detection has been vigorously investigated for years but fast accurate detection for real-world scenes remains a very challenging problem. Overcoming drawbacks of single-stage detectors, we take aim at precisely detecting objects for static an d temporal scenes in real time. Firstly, as a dual refinement mechanism, a novel anchor-offset detection is designed, which includes an anchor refinement, a feature location refinement, and a deformable detection head. This new detection mode is able to simultaneously perform two-step regression and capture accurate object features. Based on the anchor-offset detection, a dual refinement network (DRNet) is developed for high-performance static detection, where a multi-deformable head is further designed to leverage contextual information for describing objects. As for temporal detection in videos, temporal refinement networks (TRNet) and temporal dual refinement networks (TDRNet) are developed by propagating the refinement information across time. We also propose a soft refinement strategy to temporally match object motion with the previous refinement. Our proposed methods are evaluated on PASCAL VOC, COCO, and ImageNet VID datasets. Extensive comparisons on static and temporal detection verify the superiority of DRNet, TRNet, and TDRNet. Consequently, our developed approaches run in a fairly fast speed, and in the meantime achieve a significantly enhanced detection accuracy, i.e., 84.4% mAP on VOC 2007, 83.6% mAP on VOC 2012, 69.4% mAP on VID 2017, and 42.4% AP on COCO. Ultimately, producing encouraging results, our methods are applied to online underwater object detection and grasping with an autonomous system. Codes are publicly available at https://github.com/SeanChenxy/TDRN.
39 - Yichi Gu , Qisheng Wu , Jing Li 2017
Artificial intelligence is making great changes in academy and industry with the fast development of deep learning, which is a branch of machine learning and statistical learning. Fully convolutional network [1] is the standard model for semantic seg mentation. Conditional random fields coded as CNN [2] or RNN [3] and connected with FCN has been successfully applied in object detection [4]. In this paper, we introduce a multi-resolution neural network for FCN and apply Gaussian filter to the extended CRF kernel neighborhood and the label image to reduce the oscillating effect of CRF neural network segmentation, thus achieve higher precision and faster training speed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا