ﻻ يوجد ملخص باللغة العربية
Current unsupervised image-to-image translation techniques struggle to focus their attention on individual objects without altering the background or the way multiple objects interact within a scene. Motivated by the important role of attention in human perception, we tackle this limitation by introducing unsupervised attention mechanisms that are jointly adversarialy trained with the generators and discriminators. We demonstrate qualitatively and quantitatively that our approach is able to attend to relevant regions in the image without requiring supervision, and that by doing so it achieves more realistic mappings compared to recent approaches.
Image to image translation aims to learn a mapping that transforms an image from one visual domain to another. Recent works assume that images descriptors can be disentangled into a domain-invariant content representation and a domain-specific style
Unsupervised image translation aims to learn the transformation from a source domain to another target domain given unpaired training data. Several state-of-the-art works have yielded impressive results in the GANs-based unsupervised image-to-image t
Unsupervised image-to-image translation methods learn to map images in a given class to an analogous image in a different class, drawing on unstructured (non-registered) datasets of images. While remarkably successful, current methods require access
Manipulating visual attributes of images through human-written text is a very challenging task. On the one hand, models have to learn the manipulation without the ground truth of the desired output. On the other hand, models have to deal with the inh
Every recent image-to-image translation model inherently requires either image-level (i.e. input-output pairs) or set-level (i.e. domain labels) supervision. However, even set-level supervision can be a severe bottleneck for data collection in practi