ﻻ يوجد ملخص باللغة العربية
In previous work we proved that, for categories of free finite-dimensional modules over a commutative semiring, linear compact-closed symmetric monoidal structure is a property, rather than a structure. That is, if there is such a structure, then it is uniquely defined (up to monoidal equivalence). Here we provide a novel unifying category-theoretic notion of symmetric monoidal structure with local character, which we prove to be a property for a much broader spectrum of categorical examples, including the infinite-dimensional case of relations over a quantale and the non-free case of finitely generated modules over a principal ideal domain.
We show how to construct a Gamma-bicategory from a symmetric monoidal bicategory, and use that to show that the classifying space is an infinite loop space upon group completion. We also show a way to relate this construction to the classic Gamma-cat
We define a notion of symmetric monoidal closed (SMC) theory, consisting of a SMC signature augmented with equations, and describe the classifying categories of such theories in terms of proof nets.
We study abelian envelopes for pseudo-tensor categories with the property that every object in the envelope is a quotient of an object in the pseudo-tensor category. We establish an intrinsic criterion on pseudo-tensor categories for the existence of
We start from any small strict monoidal braided Ab-category and extend it to a monoidal nonstrict braided Ab-category which contains braided bialgebras. The objects of the original category turn out to be modules for these bialgebras
Suppose a Boolean function $f$ is symmetric under a group action $G$ acting on the $n$ bits of the input. For which $G$ does this mean $f$ does not have an exponential quantum speedup? Is there a characterization of how rich $G$ must be before the fu