ﻻ يوجد ملخص باللغة العربية
Future mobile devices are anticipated to perceive, understand and react to the world on their own by running multiple correlated deep neural networks on-device. Yet the complexity of these neural networks needs to be trimmed down both within-model and cross-model to fit in mobile storage and memory. Previous studies focus on squeezing the redundancy within a single neural network. In this work, we aim to reduce the redundancy across multiple models. We propose Multi-Task Zipping (MTZ), a framework to automatically merge correlated, pre-trained deep neural networks for cross-model compression. Central in MTZ is a layer-wise neuron sharing and incoming weight updating scheme that induces a minimal change in the error function. MTZ inherits information from each model and demands light retraining to re-boost the accuracy of individual tasks. Evaluations show that MTZ is able to fully merge the hidden layers of two VGG-16 networks with a 3.18% increase in the test error averaged on ImageNet and CelebA, or share 39.61% parameters between the two networks with <0.5% increase in the test errors for both tasks. The number of iterations to retrain the combined network is at least 17.8 times lower than that of training a single VGG-16 network. Moreover, experiments show that MTZ is also able to effectively merge multiple residual networks.
When using deep, multi-layered architectures to build generative models of data, it is difficult to train all layers at once. We propose a layer-wise training procedure admitting a performance guarantee compared to the global optimum. It is based on
Learning to predict multiple attributes of a pedestrian is a multi-task learning problem. To share feature representation between two individual task networks, conventional methods like Cross-Stitch and Sluice network learn a linear combination of fe
Automatic 3D neuron reconstruction is critical for analysing the morphology and functionality of neurons in brain circuit activities. However, the performance of existing tracing algorithms is hinged by the low image quality. Recently, a series of de
We propose a new framework, called Hierarchical Multi-resolution Mesh Networks (HMMNs), which establishes a set of brain networks at multiple time resolutions of fMRI signal to represent the underlying cognitive process. The suggested framework, firs
Quality Diversity (QD) algorithms are a recent family of optimization algorithms that search for a large set of diverse but high-performing solutions. In some specific situations, they can solve multiple tasks at once. For instance, they can find the