ترغب بنشر مسار تعليمي؟ اضغط هنا

Corpus Conversion Service: A machine learning platform to ingest documents at scale [Poster abstract]

67   0   0.0 ( 0 )
 نشر من قبل Michele Dolfi
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the past few decades, the amount of scientific articles and technical literature has increased exponentially in size. Consequently, there is a great need for systems that can ingest these documents at scale and make their content discoverable. Unfortunately, both the format of these documents (e.g. the PDF format or bitmap images) as well as the presentation of the data (e.g. complex tables) make the extraction of qualitative and quantitive data extremely challenging. We present a platform to ingest documents at scale which is powered by Machine Learning techniques and allows the user to train custom models on document collections. We show precision/recall results greater than 97% with regard to conversion to structured formats, as well as scaling evidence for each of the microservices constituting the platform.

قيم البحث

اقرأ أيضاً

Over the past few decades, the amount of scientific articles and technical literature has increased exponentially in size. Consequently, there is a great need for systems that can ingest these documents at scale and make the contained knowledge disco verable. Unfortunately, both the format of these documents (e.g. the PDF format or bitmap images) as well as the presentation of the data (e.g. complex tables) make the extraction of qualitative and quantitive data extremely challenging. In this paper, we present a modular, cloud-based platform to ingest documents at scale. This platform, called the Corpus Conversion Service (CCS), implements a pipeline which allows users to parse and annotate documents (i.e. collect ground-truth), train machine-learning classification algorithms and ultimately convert any type of PDF or bitmap-documents to a structured content representation format. We will show that each of the modules is scalable due to an asynchronous microservice architecture and can therefore handle massive amounts of documents. Furthermore, we will show that our capability to gather ground-truth is accelerated by machine-learning algorithms by at least one order of magnitude. This allows us to both gather large amounts of ground-truth in very little time and obtain very good precision/recall metrics in the range of 99% with regard to content conversion to structured output. The CCS platform is currently deployed on IBM internal infrastructure and serving more than 250 active users for knowledge-engineering project engagements.
108 - Siyao Peng , Yang Liu , Yilun Zhu 2020
Adpositions are frequent markers of semantic relations, but they are highly ambiguous and vary significantly from language to language. Moreover, there is a dearth of annotated corpora for investigating the cross-linguistic variation of adposition se mantics, or for building multilingual disambiguation systems. This paper presents a corpus in which all adpositions have been semantically annotated in Mandarin Chinese; to the best of our knowledge, this is the first Chinese corpus to be broadly annotated with adposition semantics. Our approach adapts a framework that defined a general set of supersenses according to ostensibly language-independent semantic criteria, though its development focused primarily on English prepositions (Schneider et al., 2018). We find that the supersense categories are well-suited to Chinese adpositions despite syntactic differences from English. On a Mandarin translation of The Little Prince, we achieve high inter-annotator agreement and analyze semantic correspondences of adposition tokens in bitext.
Recent advances in the area of legal information systems have led to a variety of applications that promise support in processing and accessing legal documents. Unfortunately, these applications have various limitations, e.g., regarding scope or exte nsibility. Furthermore, we do not observe a trend towards open access in digital libraries in the legal domain as we observe in other domains, e.g., economics of computer science. To improve open access in the legal domain, we present our approach for an open source platform to transparently process and access Legal Open Data. This enables the sustainable development of legal applications by offering a single technology stack. Moreover, the approach facilitates the development and deployment of new technologies. As proof of concept, we implemented six technologies and generated metadata for more than 250,000 German laws and court decisions. Thus, we can provide users of our platform not only access to legal documents, but also the contained information.
We introduce the Neural State Machine, seeking to bridge the gap between the neural and symbolic views of AI and integrate their complementary strengths for the task of visual reasoning. Given an image, we first predict a probabilistic graph that rep resents its underlying semantics and serves as a structured world model. Then, we perform sequential reasoning over the graph, iteratively traversing its nodes to answer a given question or draw a new inference. In contrast to most neural architectures that are designed to closely interact with the raw sensory data, our model operates instead in an abstract latent space, by transforming both the visual and linguistic modalities into semantic concept-based representations, thereby achieving enhanced transparency and modularity. We evaluate our model on VQA-CP and GQA, two recent VQA datasets that involve compositionality, multi-step inference and diverse reasoning skills, achieving state-of-the-art results in both cases. We provide further experiments that illustrate the models strong generalization capacity across multiple dimensions, including novel compositions of concepts, changes in the answer distribution, and unseen linguistic structures, demonstrating the qualities and efficacy of our approach.
Allowing humans to interactively train artificial agents to understand language instructions is desirable for both practical and scientific reasons, but given the poor data efficiency of the current learning methods, this goal may require substantial research efforts. Here, we introduce the BabyAI research platform to support investigations towards including humans in the loop for grounded language learning. The BabyAI platform comprises an extensible suite of 19 levels of increasing difficulty. The levels gradually lead the agent towards acquiring a combinatorially rich synthetic language which is a proper subset of English. The platform also provides a heuristic expert agent for the purpose of simulating a human teacher. We report baseline results and estimate the amount of human involvement that would be required to train a neural network-based agent on some of the BabyAI levels. We put forward strong evidence that current deep learning methods are not yet sufficiently sample efficient when it comes to learning a language with compositional properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا