ﻻ يوجد ملخص باللغة العربية
We extend the analysis and discretization of the Kirchhoff-Love plate bending problem from [T. Fuhrer, N. Heuer, A.H. Niemi, An ultraweak formulation of the Kirchhoff-Love plate bending model and DPG approximation, arXiv:1805.07835, 2018] in two aspects. First, we present a well-posed formulation and quasi-optimal DPG discretization that includes the gradient of the deflection. Second, we construct Fortin operators that prove the well-posedness and quasi-optimal convergence of lowest-order discrete schemes with approximated test functions for both formulations. Our results apply to the case of non-convex polygonal plates where shear forces can be less than $L_2$-regular. Numerical results illustrate expected convergence orders.
We develop and analyze an ultraweak variational formulation for a variant of the Kirchhoff-Love plate bending model. Based on this formulation, we introduce a discretization of the discontinuous Petrov-Galerkin type with optimal test functions (DPG).
We develop and analyze an ultraweak variational formulation of the Reissner-Mindlin plate bending model both for the clamped and the soft simply supported cases. We prove well-posedness of the formulation, uniformly with respect to the plate thicknes
In this paper, a deep collocation method (DCM) for thin plate bending problems is proposed. This method takes advantage of computational graphs and backpropagation algorithms involved in deep learning. Besides, the proposed DCM is based on a feedforw
In this work, we propose and develop efficient and accurate numerical methods for solving the Kirchhoff-Love plate model in domains with complex geometries. The algorithms proposed here employ curvilinear finite-difference methods for spatial discret
We present a comprehensive rotation-free Kirchhoff-Love (KL) shell formulation for peridynamics (PD) that is capable of modeling large elasto-plastic deformations and fracture in thin-walled structures. To remove the need for a predefined global para