ﻻ يوجد ملخص باللغة العربية
We present a comprehensive rotation-free Kirchhoff-Love (KL) shell formulation for peridynamics (PD) that is capable of modeling large elasto-plastic deformations and fracture in thin-walled structures. To remove the need for a predefined global parametric domain, Principal Component Analysis is employed in a meshfree setting to develop a local parameterization of the shell midsurface. The KL shell kinematics is utilized to develop a correspondence-based PD formulation. A bond-stabilization technique is employed to naturally achieve stability of the discrete solution. Only the mid-surface velocity degrees of freedom are used in the governing thin-shell equations. 3D rate-form material models are employed to enable simulating a wide range of material behavior. A bond-associative damage correspondence modeling approach is adopted to use classical failure criteria at the bond level, which readily enables the simulation of brittle and ductile fracture. NAT{Discretizing the model with asymptotically compatible meshfree approximation provides a scheme which converges to the classical KL shell model while providing an accurate and flexible framework for treating fracture.} A wide range of numerical examples, ranging from elastostatics to problems involving plasticity, fracture, and fragmentation, are conducted to validate the accuracy, convergence, and robustness of the developed PD thin-shell formulation. It is also worth noting that the present method naturally enables the discretization of a shell theory requiring higher-order smoothness on a completely unstructured surface mesh.
Stable and accurate modeling of thin shells requires proper enforcement of all types of boundary conditions. Unfortunately, for Kirchhoff-Love shells, strong enforcement of Dirichlet boundary conditions is difficult because both functional and deriva
A method to simulate orthotropic behaviour in thin shell finite elements is proposed. The approach is based on the transformation of shape function derivatives, resulting in a new orthogonal basis aligned to a specified preferred direction for all el
We develop and analyze an ultraweak variational formulation for a variant of the Kirchhoff-Love plate bending model. Based on this formulation, we introduce a discretization of the discontinuous Petrov-Galerkin type with optimal test functions (DPG).
We extend the analysis and discretization of the Kirchhoff-Love plate bending problem from [T. Fuhrer, N. Heuer, A.H. Niemi, An ultraweak formulation of the Kirchhoff-Love plate bending model and DPG approximation, arXiv:1805.07835, 2018] in two aspe
In this work, we propose and develop efficient and accurate numerical methods for solving the Kirchhoff-Love plate model in domains with complex geometries. The algorithms proposed here employ curvilinear finite-difference methods for spatial discret