ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a cost-aware cascading bandits model, a new variant of multi-armed ban- dits with cascading feedback, by considering the random cost of pulling arms. In each step, the learning agent chooses an ordered list of items and examines them sequentially, until certain stopping condition is satisfied. Our objective is then to max- imize the expected net reward in each step, i.e., the reward obtained in each step minus the total cost in- curred in examining the items, by deciding the or- dered list of items, as well as when to stop examina- tion. We study both the offline and online settings, depending on whether the state and cost statistics of the items are known beforehand. For the of- fline setting, we show that the Unit Cost Ranking with Threshold 1 (UCR-T1) policy is optimal. For the online setting, we propose a Cost-aware Cas- cading Upper Confidence Bound (CC-UCB) algo- rithm, and show that the cumulative regret scales in O(log T ). We also provide a lower bound for all {alpha}-consistent policies, which scales in {Omega}(log T ) and matches our upper bound. The performance of the CC-UCB algorithm is evaluated with both synthetic and real-world data.
We consider a multi-armed bandit problem specified by a set of Gaussian or Bernoulli distributions endowed with a unimodal structure. Although this problem has been addressed in the literature (Combes and Proutiere, 2014), the state-of-the-art algori
Cascading bandit (CB) is a popular model for web search and online advertising, where an agent aims to learn the $K$ most attractive items out of a ground set of size $L$ during the interaction with a user. However, the stationary CB model may be too
We study the problem of best arm identification in linear bandits in the fixed-budget setting. By leveraging properties of the G-optimal design and incorporating it into the arm allocation rule, we design a parameter-free algorithm, Optimal Design-ba
We propose a dimensionality reducing matrix design based on training data with constraints on its Frobenius norm and number of rows. Our design criteria is aimed at preserving the distances between the data points in the dimensionality reduced space
As recommender systems send a massive amount of content to keep users engaged, users may experience fatigue which is contributed by 1) an overexposure to irrelevant content, 2) boredom from seeing too many similar recommendations. To address this pro