ﻻ يوجد ملخص باللغة العربية
The breakdown of E_6 within the supersymmetric (SUSY) Grand Unified Theories (GUTs) can result in SUSY extensions of the standard model (SM) based on the SM gauge group together with extra U(1) gauge symmetry under which right-handed neutrinos have zero charge. In these U(1)_N extensions of the minimal supersymmetric standard model (MSSM) a single discrete tilde{Z}^H_2 symmetry may be used to suppress the most dangerous operators, that give rise to proton decay as well as non-diagonal flavour transitions at low energies. The SUSY models under consideration involves Z and extra exotic matter beyond the MSSM. We discuss leptogenesis within this SUSY model and argue that the extra exotic states may lead to the non--standard Higgs decays.
We explore leptogenesis within the E6 inspired U(1) extension of the MSSM in which exact custodial symmetry forbids tree-level flavour-changing transitions and the most dangerous baryon and lepton number violating operators. This supersymmetric (SUSY
We investigate precision observables sensitive to custodial symmetric/violating UV physics beyond the Standard Model. We use the SMEFT framework which in general includes non-oblique corrections that requires a generalization of the Peskin-Takeuchi $
Dark mesons are bosonic composites of a new, strongly-coupled sector beyond the Standard Model. We consider several dark sectors with fermions that transform under the electroweak group, as arise from a variety of models including strongly-coupled th
In the E6 inspired composite Higgs model (E6CHM) the strongly interacting sector possesses an SU(6)times U(1)_Btimes U(1)_L global symmetry. Near scale fgtrsim 10 TeV the SU(6) symmetry is broken down to its SU(5) subgroup, that involves the standard
It is well known that global symmetries protect local supersymmetry and a zero value for the cosmological constant in no--scale supergravity. The breakdown of these symmetries, which ensure the vanishing of the vacuum energy density, results in a set