ﻻ يوجد ملخص باللغة العربية
Dark mesons are bosonic composites of a new, strongly-coupled sector beyond the Standard Model. We consider several dark sectors with fermions that transform under the electroweak group, as arise from a variety of models including strongly-coupled theories of dark matter (e.g., stealth dark matter), bosonic technicolor (strongly-coupled indcued electroweak symmetry breaking), vector-like confinement, etc. We consider theories with two and four flavors under an $SU(N)$ strong group that acquire variously chiral, vector-like, and mixed contributions to their masses. We construct the non-linear sigma model describing the dark pions and match the ultraviolet theory onto a low energy effective theory that provides the leading interactions of the lightest dark pions with the Standard Model. We uncover two distinct classes of effective theories that are distinguishable by how the lightest dark pions decay: Gaugephilic: where $pi^0 rightarrow Z h$, $pi^pm rightarrow W h$ dominate once kinematically open, and Gaugephobic: where $pi^0 rightarrow bar{f} f$, $pi^pm rightarrow bar{f} f$ dominate. Custodial $SU(2)$ plays a critical role in determining the philic or phobic nature of a model. In dark sectors that preserve custodial $SU(2)$, there is no axial anomaly, and so the decay $pi^0 rightarrow gammagamma$ is highly suppressed. In a companion paper, we study dark pion production and decay at colliders, obtaining the constraints and sensitivity at the LHC.
Standard Model (SM) of particle physics has achieved enormous success in describing the interactions among the known fundamental constituents of nature, yet it fails to describe phenomena for which there is very strong experimental evidence, such as
The breakdown of E_6 within the supersymmetric (SUSY) Grand Unified Theories (GUTs) can result in SUSY extensions of the standard model (SM) based on the SM gauge group together with extra U(1) gauge symmetry under which right-handed neutrinos have z
We investigate precision observables sensitive to custodial symmetric/violating UV physics beyond the Standard Model. We use the SMEFT framework which in general includes non-oblique corrections that requires a generalization of the Peskin-Takeuchi $
We discuss the recent results on the muon anomalous magnetic moment in the context of new physics models with light scalars. We propose a model in which the one-loop contributions to g-2 of a scalar and a pseudoscalar naturally cancel in the massless
We study bounds on Higgs boson masses from perturbative unitarity in the Georgi-Machacek model, whose Higgs sector is composed of a scalar isospin doublet, a real and a complex isospin triplet fields. This model can be compatible with the electroweak