ﻻ يوجد ملخص باللغة العربية
The variation of the work function upon carbon adsorption on the reconstructed Au(110) surface is measured experimentally and compared to density functional calculations. The adsorption dynamics is simulated with ab-initio molecular dynamics techniques. The contribution of various energetically available adsorption sites on the deposition process is analyzed, and the work function behavior with carbon coverage is explained by the resultant electron charge density distributions.
We investigate the work function (WF) variation of different Au crystallographic surface orientations with carbon atom adsorption. Ab-initio calculations within density-functional theory are performed on carbon deposited (100), (110), and (111) gold
The decoherence of trapped-ion quantum gates due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from the trap-electrode surfaces. In this work, we invest
Detecting dopamine is of great biological importance because the molecule plays many roles in the human body. For instance, the lack of dopamine release is the cause of Parkinsons disease. Although many researchers have carried out experiments on dop
Au-Cu bimetallic nanoparticles (NPs) grown on TiO 2 (110) have been followed in-situ using grazing incidence x-ray diffraction and x-ray photoemission spectroscopy from their synthesis to their exposure to a CO/O 2 mixture at low pressure (P < 10-5 m
We demonstrate and interpret a technique of laser-induced formation of thin metallic films using alkali atoms on the window of a dense-vapour cell. We show that this intriguing photo-stimulated process originates from the adsorption of Cs atoms via t