ترغب بنشر مسار تعليمي؟ اضغط هنا

Is the IMF in ellipticals bottom-heavy? Clues from their chemical abundances

62   0   0.0 ( 0 )
 نشر من قبل Carlo Maria De Masi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We tested the implementation of different IMFs in our model for the chemical evolution of ellipticals, with the aim of reproducing the observed relations of [Fe/H] and [Mg/Fe] abundances with galaxy mass in a sample of early-type galaxies selected from the SPIDER-SDSS catalog. Abundances in the catalog were derived from averaged spectra, obtained by stacking individual spectra according to central velocity dispersion, as a proxy of galaxy mass. We tested initial mass functions already used in a previous work, as well as two new models, based on low-mass tapered (bimodal) IMFs, where the IMF becomes either (1) bottom-heavy in more massive galaxies, or (2) is time-dependent, switching from top-heavy to bottom-heavy in the course of galactic evolution. We found that observations could only be reproduced by models assuming either a constant, Salpeter IMF, or a time-dependent distribution, as other IMFs failed. We further tested the models by calculating their M/L ratios. We conclude that a constant, time-independent bottom-heavy IMF does not reproduce the data, especially the increase of the $[alpha/Fe]$ ratio with galactic stellar mass, whereas a variable IMF, switching from top to bottom-heavy, can match observations. For the latter models, the IMF switch always occurs at the earliest possible considered time, i.e. $t_{text{switch}}= 0.1$ Gyr.



قيم البحث

اقرأ أيضاً

123 - Desika Narayanan 2012
We examine the cosmic evolution of a stellar initial mass function (IMF) in galaxies that varies with the Jeans mass in the interstellar medium, paying particular attention to the K-band stellar mass to light ratio (M/L_K) of present-epoch massive ga laxies. We calculate the typical Jeans mass using high-resolution hydrodynamic simulations coupled with a fully radiative model for the ISM, which yields a parameterisation of the IMF characteristic mass as a function of galaxy star formation rate (SFR). We then calculate the star formation histories of galaxies utilising an equilibrium galaxy growth model coupled with constraints on the star formation histories set by abundance matching models. We find that at early times, energetic coupling between dust and gas drive warm conditions in the ISM, yielding bottom-light/top- heavy IMFs associated with large ISM Jeans masses for massive star-forming galaxies. Owing to the remnants of massive stars that formed during the top-heavy phases at early times, the resultant M/L_K(sigma) in massive galaxies at the present epoch is increased relative to the non- varying IMF case. At late times, lower cosmic ray fluxes allow for cooler ISM temperatures in massive galaxies, and hence newly formed clusters will exhibit bottom-heavy IMFs, further increasing M/L_K(sigma). Our central result is hence that a given massive galaxy may go through both top-heavy and bottom-heavy IMF phases during its lifetime, though the bulk of the stars form during a top-heavy phase. Qualitatively, the variations in M/L_K(sigma) with galaxy mass are in agreement with observations, however, our model may not be able to account for bottom-heavy mass functions as indicated by stellar absorption features.
Element abundances in high-redshift quasar absorbers offer excellent probes of the chemical enrichment of distant galaxies, and can constrain models for population III and early population II stars. Recent observations indicate that the sub-damped Ly man-alpha (sub-DLA) absorbers are more metal-rich than DLA absorbers at redshifts 0$<$$z$$<$3. It has also been suggested that the DLA metallicity drops suddenly at $z$$>$4.7. However, only 3 DLAs at $z$$>$4.5 and none at $z$$>$3.5 have dust-free metallicity measurements of undepleted elements. We report the first quasar sub-DLA metallicity measurement at $z$$>$3.5, from detections of undepleted elements in high-resolution data for a sub-DLA at $z$=5.0. We obtain fairly robust abundances of C, O, Si, and Fe, using lines outside the Lyman-alpha forest. This absorber is metal-poor, with O/H]=-2.00$pm$0.12, which is $gtrsim$4$sigma$ below the level expected from extrapolation of the trend for $z$$<$3.5 sub-DLAs. The C/O ratio is 1.8$^{+0.4}_{-0.3}$ times lower than in the Sun. More strikingly, Si/O is 3.2$^{+0.6}_{-0.5}$ times lower than in the Sun, while Si/Fe is nearly (1.2$^{+0.4}_{-0.3}$ times) solar. This absorber does not display a clear alpha/Fe enhancement. Dust depletion may have removed more Si from the gas phase than is common in the Milky Way interstellar medium, which may be expected if high-redshift supernovae form more silicate-rich dust. C/O and Si/O vary substantially between different velocity components, indicating spatial variations in dust depletion and/or early stellar nucleosynethesis (e.g., population III star initial mass function). The higher velocity gas may trace an outflow enriched by early stars.
Well studied Open Clusters (OCs) in the Solar neighbourhood are used as reference objects to test galactic and stellar theories. For that purpose their chemical composition needs to be known with a high level of confidence. The aims of this work are (1) to determine accurate and precise abundances of 22 chemical species (from Na to Eu) in the Hyades, Praesepe and Rupecht 147 using a large number of stars at different evolutionary states, (2) to evaluate the level of chemical homogeneity of these OCs, (3) to compare their chemical signatures. We gathered $sim$800 high resolution and high S/N spectra of $sim$100 members in the three OCs, obtained with the latest memberships based on Gaia DR2 data. We build a pipeline which computes atmospheric parameters and strictly line-by-line differential abundances among twin stars in our sample, which allows us to reach a very high precision in the abundances (0.01-0.02 dex in most of the elements). We find large differences in the absolute abundances in some elements, which can be attributed to diffusion, NLTE effects or systematics in the analysis. For the three OCs, we find strong correlations in the differential abundances between different pairs of elements, which can be explained by some level of chemical inhomogeneity. We compare differential abundances of several stars from the Hyades and Praesepe tails: the stars that differ more in chemical abundances also have distinct kinematics, even though they have been identified as members of the tail. With this technique we find that the Hyades and Preasepe have the same chemical signature when G dwarfs and K giants are considered. Despite a certain level of inhomogeneity in each cluster, it is still possible to clearly distinguish the chemical signature of the older cluster Ruprecht~147 when compared to the others.
Recent evidence based independently on spectral line strengths and dynamical modelling point towards a non-universal stellar Initial Mass Function (IMF), probably implying an excess of low-mass stars in elliptical galaxies with a high velocity disper sion. Here we show that a time-independent bottom-heavy IMF is compatible neither with the observed metal-rich populations found in giant ellipticals nor with the number of stellar remnants observed within these systems. We suggest a two-stage formation scenario involving a time-dependent IMF to reconcile these observational constraints. In this model, an early strong star-bursting stage with a top-heavy IMF is followed by a more prolonged stage with a bottom-heavy IMF. Such model is physically motivated by the fact that a sustained high star formation will bring the interstellar medium to a state of pressure, temperature and turbulence that can drastically alter the fragmentation of the gaseous component into small clumps, promoting the formation of low-mass stars. This toy model is in good agreement with the different observational constrains on massive elliptical galaxies, such as age, metallicity, alpha-enhancement, M/L, or the mass fraction of the stellar component in low-mass stars.
We try to identify the nature of high redshift long Gamma-Ray Bursts (LGRBs) host galaxies by comparing the observed abundance ratios in the interstellar medium with detailed chemical evolution models accounting for the presence of dust. We compared measured abundance data from LGRB afterglow spectra to abundance patterns as predicted by our models for different galaxy types. We analysed in particular [X/Fe] abundance ratios (where X is C, N, O, Mg, Si, S, Ni, Zn) as functions of [Fe/H]. Different galaxies (irregulars, spirals, ellipticals) are, in fact, characterised by different star formation histories, which produce different [X/Fe] ratios (time-delay model). This allows us to identify the morphology of the hosts and to infer their age (i.e. the time elapsed from the beginning of star formation) at the time of the GRB events, as well as other important parameters. Relative to previous works, we use newer models in which we adopt updated stellar yields and prescriptions for dust production, accretion and destruction. We have considered a sample of seven LGRB host galaxies. Our results have suggested that two of them (GRB 050820, GRB 120815A) are ellipticals, two (GRB 081008, GRB 161023A) are spirals and three (GRB 050730, GRB 090926A, GRB 120327A) are irregulars. We also found that in some cases changing the initial mass function can give better agreement with the observed data. The calculated ages of the host galaxies span from the order of 10 Myr to little more than 1 Gyr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا