ﻻ يوجد ملخص باللغة العربية
Recent evidence based independently on spectral line strengths and dynamical modelling point towards a non-universal stellar Initial Mass Function (IMF), probably implying an excess of low-mass stars in elliptical galaxies with a high velocity dispersion. Here we show that a time-independent bottom-heavy IMF is compatible neither with the observed metal-rich populations found in giant ellipticals nor with the number of stellar remnants observed within these systems. We suggest a two-stage formation scenario involving a time-dependent IMF to reconcile these observational constraints. In this model, an early strong star-bursting stage with a top-heavy IMF is followed by a more prolonged stage with a bottom-heavy IMF. Such model is physically motivated by the fact that a sustained high star formation will bring the interstellar medium to a state of pressure, temperature and turbulence that can drastically alter the fragmentation of the gaseous component into small clumps, promoting the formation of low-mass stars. This toy model is in good agreement with the different observational constrains on massive elliptical galaxies, such as age, metallicity, alpha-enhancement, M/L, or the mass fraction of the stellar component in low-mass stars.
Over the past years observations of young and populous star clusters have shown that the stellar initial mass function (IMF) can be conveniently described by a two-part power-law with an exponent alpha_2 = 2.3 for stars more massive than about 0.5 Ms
Observational studies are showing that the galaxy-wide stellar initial mass function are top-heavy in galaxies with high star-formation rates (SFRs). Calculating the integrated galactic stellar initial mass function (IGIMF) as a function of the SFR o
The frequency and properties of multiple star systems offer powerful tests of star formation models. Multiplicity surveys over the past decade have shown that binary properties vary strongly with mass, but the functional forms and the interplay betwe
Both radiative and mechanical feedback from Active Galactic Nuclei have been found to be important for the evolution of elliptical galaxies. We compute how a shock may be driven from a central black hole into the gaseous envelope of an elliptical gal
The distance to NGC 5128, the central galaxy of the Centaurus group and the nearest giant elliptical to us, has been determined using two independent distance indicators: the Mira period-luminosity (PL) relation and the luminosity of the tip of the r