ترغب بنشر مسار تعليمي؟ اضغط هنا

A generalized Hardy-Ramanujan formula for the number of restricted integer partitions

99   0   0.0 ( 0 )
 نشر من قبل Ke Wang
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the asymptotic formula for $p_n(N,M)$, the number of partitions of integer $n$ with part size at most $N$ and length at most $M$. We consider both $N$ and $M$ are comparable to $sqrt{n}$. This is an extension of the classical Hardy-Ramanujan formula and Szekeres formula. The proof relies on the saddle point method.



قيم البحث

اقرأ أيضاً

217 - Stephen DeSalvo 2020
The Hardy-Ramanujan formula for the number of integer partitions of $n$ is one of the most popular results in partition theory. While the unabridged final formula has been celebrated as reflecting the genius of its authors, it has become all too comm on to attribute either some simplified version of the formula which is not as ingenious, or an alternative more elegant version which was expanded on afterwards by other authors. We attempt to provide a clear and compelling justification for distinguishing between the various formulas and simplifications, with a summarizing list of key take-aways in the final section.
78 - Shishuo Fu , Dazhao Tang 2017
A generalized crank ($k$-crank) for $k$-colored partitions is introduced. Following the work of Andrews-Lewis and Ji-Zhao, we derive two results for this newly defined $k$-crank. Namely, we first obtain some inequalities between the $k$-crank counts $M_{k}(r,m,n)$ for $m=2,3$ and $4$, then we prove the positivity of symmetrized even $k$-crank moments weighted by the parity for $k=2$ and $3$. We conclude with several remarks on furthering the study initiated here.
In order to provide a unified combinatorial interpretation of congruences modulo $5$ for 2-colored partition functions, Garvan introduced a bicrank statistic in terms of weighted vector partitions. In this paper, we obtain some inequalities between t he bicrank counts $M^{*}(r,m,n)$ for $m=2$, $3$ and $4$ via their asymptotic formulas and some $q$-series techniques. These inequalities are parallel to Andrews and Lewis results on the rank and crank counts for ordinary partitions.
Ramanujan complexes are high dimensional simplical complexes generalizing Ramanujan graphs. A result of Oh on quantitative property (T) for Lie groups over local fields is used to deduce a Mixing Lemma for such complexes. As an application we prove t hat non-partite Ramanujan complexes have high girth and high chromatic number, generalizing a well known result about Ramanujan graphs.
Let $N(leq m,n)$ denote the number of partitions of $n$ with rank not greater than $m$, and let $M(leq m,n)$ denote the number of partitions of $n$ with crank not greater than $m$. Bringmann and Mahlburg observed that $N(leq m,n)leq M(leq m,n)leq N(l eq m+1,n)$ for $m<0$ and $1leq nleq 100$. They also pointed out that these inequalities can be restated as the existence of a re-ordering $tau_n$ on the set of partitions of $n$ such that $|text{crank}(lambda)|-|text{rank}(tau_n(lambda))|=0$ or $1$ for all partitions $lambda$ of $n$, that is, the rank and the crank are nearly equal distributions over partitions of $n$. In the study of the spt-function, Andrews, Dyson and Rhoades proposed a conjecture on the unimodality of the spt-crank, and they showed that this conjecture is equivalent to the inequality $N(leq m,n)leq M(leq m,n)$ for $m<0$ and $ngeq 1$. We proved this conjecture by combiantorial arguments. In this paper, we prove the inequality $N(leq m,n)leq M(leq m,n)$ for $m<0$ and $ngeq 1$. Furthermore, we define a re-ordering $tau_n$ of the partitions $lambda$ of $n$ and show that this re-ordering $tau_n$ leads to the nearly equal distribution of the rank and the crank. Using the re-ordering $tau_n$, we give a new combinatorial interpretation of the function ospt$(n)$ defined by Andrews, Chan and Kim, which immediately leads to an upper bound for $ospt(n)$ due to Chan and Mao.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا