ﻻ يوجد ملخص باللغة العربية
We derive the asymptotic formula for $p_n(N,M)$, the number of partitions of integer $n$ with part size at most $N$ and length at most $M$. We consider both $N$ and $M$ are comparable to $sqrt{n}$. This is an extension of the classical Hardy-Ramanujan formula and Szekeres formula. The proof relies on the saddle point method.
The Hardy-Ramanujan formula for the number of integer partitions of $n$ is one of the most popular results in partition theory. While the unabridged final formula has been celebrated as reflecting the genius of its authors, it has become all too comm
A generalized crank ($k$-crank) for $k$-colored partitions is introduced. Following the work of Andrews-Lewis and Ji-Zhao, we derive two results for this newly defined $k$-crank. Namely, we first obtain some inequalities between the $k$-crank counts
In order to provide a unified combinatorial interpretation of congruences modulo $5$ for 2-colored partition functions, Garvan introduced a bicrank statistic in terms of weighted vector partitions. In this paper, we obtain some inequalities between t
Ramanujan complexes are high dimensional simplical complexes generalizing Ramanujan graphs. A result of Oh on quantitative property (T) for Lie groups over local fields is used to deduce a Mixing Lemma for such complexes. As an application we prove t
Let $N(leq m,n)$ denote the number of partitions of $n$ with rank not greater than $m$, and let $M(leq m,n)$ denote the number of partitions of $n$ with crank not greater than $m$. Bringmann and Mahlburg observed that $N(leq m,n)leq M(leq m,n)leq N(l