ترغب بنشر مسار تعليمي؟ اضغط هنا

On a generalized crank for $k$-colored partitions

79   0   0.0 ( 0 )
 نشر من قبل Tang Dazhao
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A generalized crank ($k$-crank) for $k$-colored partitions is introduced. Following the work of Andrews-Lewis and Ji-Zhao, we derive two results for this newly defined $k$-crank. Namely, we first obtain some inequalities between the $k$-crank counts $M_{k}(r,m,n)$ for $m=2,3$ and $4$, then we prove the positivity of symmetrized even $k$-crank moments weighted by the parity for $k=2$ and $3$. We conclude with several remarks on furthering the study initiated here.



قيم البحث

اقرأ أيضاً

75 - Dazhao Tang 2017
Let $p_{-k}(n)$ enumerate the number of $k$-colored partitions of $n$. In this paper, we establish some infinite families of congruences modulo 25 for $k$-colored partitions. Furthermore, we prove some infinite families of Ramanujan-type congruences modulo powers of 5 for $p_{-k}(n)$ with $k=2, 6$, and $7$. For example, for all integers $ngeq0$ and $alphageq1$, we prove that begin{align*} p_{-2}left(5^{2alpha-1}n+dfrac{7times5^{2alpha-1}+1}{12}right) &equiv0pmod{5^{alpha}} end{align*} and begin{align*} p_{-2}left(5^{2alpha}n+dfrac{11times5^{2alpha}+1}{12}right) &equiv0pmod{5^{alpha+1}}. end{align*}
122 - Shane Chern , Dazhao Tang 2017
Inspired by Andrews 2-colored generalized Frobenius partitions, we consider certain weighted 7-colored partition functions and establish some interesting Ramanujan-type identities and congruences. Moreover, we provide combinatorial interpretations of some congruences modulo 5 and 7. Finally, we study the properties of weighted 7-colored partitions weighted by the parity of certain partition statistics.
Let $N(leq m,n)$ denote the number of partitions of $n$ with rank not greater than $m$, and let $M(leq m,n)$ denote the number of partitions of $n$ with crank not greater than $m$. Bringmann and Mahlburg observed that $N(leq m,n)leq M(leq m,n)leq N(l eq m+1,n)$ for $m<0$ and $1leq nleq 100$. They also pointed out that these inequalities can be restated as the existence of a re-ordering $tau_n$ on the set of partitions of $n$ such that $|text{crank}(lambda)|-|text{rank}(tau_n(lambda))|=0$ or $1$ for all partitions $lambda$ of $n$, that is, the rank and the crank are nearly equal distributions over partitions of $n$. In the study of the spt-function, Andrews, Dyson and Rhoades proposed a conjecture on the unimodality of the spt-crank, and they showed that this conjecture is equivalent to the inequality $N(leq m,n)leq M(leq m,n)$ for $m<0$ and $ngeq 1$. We proved this conjecture by combiantorial arguments. In this paper, we prove the inequality $N(leq m,n)leq M(leq m,n)$ for $m<0$ and $ngeq 1$. Furthermore, we define a re-ordering $tau_n$ of the partitions $lambda$ of $n$ and show that this re-ordering $tau_n$ leads to the nearly equal distribution of the rank and the crank. Using the re-ordering $tau_n$, we give a new combinatorial interpretation of the function ospt$(n)$ defined by Andrews, Chan and Kim, which immediately leads to an upper bound for $ospt(n)$ due to Chan and Mao.
In order to provide a unified combinatorial interpretation of congruences modulo $5$ for 2-colored partition functions, Garvan introduced a bicrank statistic in terms of weighted vector partitions. In this paper, we obtain some inequalities between t he bicrank counts $M^{*}(r,m,n)$ for $m=2$, $3$ and $4$ via their asymptotic formulas and some $q$-series techniques. These inequalities are parallel to Andrews and Lewis results on the rank and crank counts for ordinary partitions.
Let $K_{n}^{r}$ denote the complete $r$-uniform hypergraph on $n$ vertices. A matching $M$ in a hypergraph is a set of pairwise vertex disjoint edges. Recent Ramsey-type results rely on lemmas about the size of monochromatic matchings. A starting poi nt for this study comes from a well-known result of Alon, Frankl, and Lovasz (1986). Our motivation is to find the smallest $n$ such that every $t$-coloring of $K_{n}^{r}$ contains an $s$-colored matching of size $k$. It has been conjectured that in every coloring of the edges of $K_n^r$ with 3 colors there is a 2-colored matching of size at least $k$ provided that $n geq kr + lfloor frac{k-1}{r+1} rfloor$. The smallest test case is when $r=3$ and $k=4$. We prove that in every 3-coloring of the edges of $K_{12}^3$ there is a 2-colored matching of size 4.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا